570
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Social cognition in hyperkinetic movement disorders: a systematic review

, , , ORCID Icon & ORCID Icon
Pages 331-354 | Received 30 Jul 2022, Published online: 21 Aug 2023

References

  • Abdo, W. F., Van De Warrenburg, B. P. C., Burn, D. J., Quinn, N. P., & Bloem, B. R. (2010). The clinical approach to movement disorders. Nature Reviews Neurology, 6, 29–37. https://doi.org/10.1038/nrneurol.2009.196
  • Adolphs, R. (2010). What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences, 1191(1), 42–61. https://doi.org/10.1111/j.1749-6632.2010.05445.x
  • Adolphs, R., Damasio, H., Tranel, D., Cooper, G., & Damasio, A. R. (2000). A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. The Journal of Neuroscience, 20(7), 2683–2690. https://doi.org/10.1523/JNEUROSCI.20-07-02683.2000
  • Adolphs, R., Tranel, D., & Damasio, H. (2001). Emotion recognition from faces and prosody following temporal lobectomy. Neuropsychology, 15(3), 396–404. https://doi.org/10.1037//0894-4105.15.3.396
  • Albanese, A., Bhatia, K., Bressman, S. B., DeLong, M. R., Fahn, S., Fung, V. S. C., Hallett, M., Jankovic, J., Jinnah, H. A., Klein, C., Lang, A. E., Mink, J. W., & Teller, J. K. (2013). Phenomenology and classification of dystonia: A consensus update. Movement Disorders, 28(7), 863–873. https://doi.org/10.1002/mds.25475
  • Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375. https://doi.org/10.1016/0166-2236(89)90074-X
  • Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region. Trends in Cognitive Sciences, 4(7), 267–278. https://doi.org/10.1016/S1364-6613(00)01501-1
  • Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7, 268–277. https://doi.org/10.1038/nrn1884
  • Auzou, N., Foubert-Samier, A., Dupouy, S., & Meissner, W. G. (2014). Facial emotion recognition is inversely correlated with tremor severity in essential tremor. Journal of Neural Transmission, 121, 347–351. https://doi.org/10.1007/s00702-013-1110-1
  • Avanzino, L., Cherif, A., Crisafulli, O., Carbone, F., Zenzeri, J., Morasso, P., Abbruzzese, G., Pelosin, E., & Konczak, J. (2020). Tactile and proprioceptive dysfunction differentiates cervical dystonia with and without tremor. Neurology, 94(6), e639–e650. https://doi.org/10.1212/WNL.0000000000008916
  • Avanzino, L., Ravaschio, A., Lagravinese, G., Bonassi, G., Abbruzzese, G., & Pelosin, E. (2018). Adaptation of feedforward movement control is abnormal in patients with cervical dystonia and tremor. Clinical Neurophysiology, 129(1), 319–326. https://doi.org/10.1016/j.clinph.2017.08.020
  • Avenanti, A., Bueti, D., Galati, G., & Aglioti, S. M. (2005). Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain. Nature Neuroscience, 8(7), 955–960. https://doi.org/10.1038/nn1481
  • Avenanti, A., Candidi, M., & Urgesi, C. (2013). Vicarious motor activation during action perception: Beyond correlational evidence. Frontiers in Human Neuroscience, 7, 185. https://doi.org/10.3389/fnhum.2013.00185
  • Avenanti, A., Coccia, M., Ladavas, E., Provinciali, L., & Ceravolo, M. G. (2012). Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke: A randomized trial. Neurology, 78(4), 256–264. https://doi.org/10.1212/WNL.0b013e3182436558
  • Avenanti, A., Paracampo, R., Annella, L., Tidoni, E., & Aglioti, S. M. (2018). Boosting and decreasing action prediction abilities through excitatory and inhibitory tDCS of inferior frontal cortex. Cerebral Cortex, 28(4), 1282–1296. https://doi.org/10.1093/cercor/bhx041
  • Avenanti, A., & Urgesi, C. (2011). Understanding ‘ what ’ others do: Mirror mechanisms play a crucial role in action perception. Social Cognitive and Affective Neuroscience, 6(3), 257–259. https://doi.org/10.1093/scan/nsr004
  • Baek, E. C., Porter, M. A., & Parkinson, C. (2021). Social network analysis for social neuroscientists. Social Cognitive and Affective Neuroscience, 16(8), 883–901. https://doi.org/10.1093/scan/nsaa069
  • Baez, S., Pino, M., Berrío, M., Santamaría-García, H., Sedeño, L., García, A. M., Fittipaldi, S., & Ibáñez, A. (2018). Corticostriatal signatures of schadenfreude: Evidence from Huntington’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 89(1), 112–116. https://doi.org/10.1136/jnnp-2017-316055
  • Baez, S., Santamaría-García, H., Orozco, J., Fittipaldi, S., García, A. M., & Pino, M., et al. (2016). Your misery is no longer my pleasure: Reduced schadenfreude in Huntington’s disease families. Cortex, 83, 78–85. https://doi.org/10.1016/j.cortex.2016.07.009
  • Bagnis, A., Celeghin, A., Diano, M., Mendez, C. A., Spadaro, G., Mosso, C. O., Avenanti, A., & Tamietto, M. (2020). Functional neuroanatomy of racial categorization from visual perception: A meta-analytic study. NeuroImage, 217, 116939. https://doi.org/10.1016/j.neuroimage.2020.116939
  • Barchetta, S., Martino, G., Craparo, G., Salehinejad, M. A., Nitsche, M. A., & Vicario, C. M. (2021). Alexithymia is linked with a negative bias for past and current events in healthy humans. International Journal of Environmental Research and Public Health, 18(13), 6696. https://doi.org/10.3390/ijerph18136696
  • Baron-Cohen, S. (2010). Empathizing, systemizing, and the extreme male brain theory of autism . Progress in Brain Research 186 167–175. https://doi.org/10.1016/B978-0-444-53630-3.00011-7
  • Barrett, L. F., & Satpute, A. B. (2013). Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. Current Opinion in Neurobiology, 23(3), 361–372. https://doi.org/10.1016/j.conb.2012.12.012
  • Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59(1), 617–645. https://doi.org/10.1146/annurev.psych.59.103006.093639
  • Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353–364. https://doi.org/10.1038/nn.4502
  • Bates, G. P., Dorsey, R., Gusella, J. F., Hayden, M. R., Kay, C., Leavitt, B. R., Nance, M., Ross, C. A., Scahill, R. I., Wetzel, R., Wild, E. J., & Tabrizi, S. J. (2015). Huntington disease. Nature Reviews Disease Primers, 1(1), 15005. https://doi.org/10.1038/nrdp.2015.5
  • Bayliss, L., Galvez, V., Ochoa-Morales, A., Chávez-Oliveros, M., Rodríguez-Agudelo, Y., Delgado-García, G., & Boll, M. C. (2019). Theory of mind impairment in Huntington’s disease patients and their relatives. Arquivos de Neuro-Psiquiatria, 77(8), 574–578. https://doi.org/10.1590/0004-282x20190092
  • Beal, M. F., Kowall, N. W., Ellison, D. W., Mazurek, M. F., Swartz, K. J., & Martin, J. B. (1986). Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature, 321, 168–171. https://doi.org/10.1038/321168a0
  • Beaudoin, C., & Beauchamp, M. H. (2020). Social cognition. In Gallagher, A., Bulteau, C., Cohen, D., Michaud, J. L. (Eds.). Neurocognitive Development: Normative Development. Handbook of Clinical Neurology (pp. 255–264). Elsevier. https://doi.org/10.1016/B978-0-444-64150-2.00022-8
  • Belardinelli, M. O., Huenefeldt, T., Maffi, S., Squitieri, F., & Migliore, S. (2019). Effects of stimulus-related variables on mental states recognition in Huntington’s disease. International Journal of Neuroscience, 129(6), 563–572. https://doi.org/10.1080/00207454.2018.1552691
  • Berardelli, A., Currà, A., Fabbrini, G., Gilio, F., & Manfredi, M. (2003). Pathophysiology of tics and Tourette syndrome. Journal of Neurology, 250(7), 781–787. https://doi.org/10.1007/s00415-003-1102-4
  • Bhalsing, K. S., Saini, J., & Pal, P. K. (2013). Understanding the pathophysiology of essential tremor through advanced neuroimaging: A review. Journal of the Neurological Sciences, 335(1–2), 9–13. https://doi.org/10.1016/j.jns.2013.09.003
  • Bologna, M., & Berardelli, A. (2017). Cerebellum: An explanation for dystonia? Cerebellum & Ataxias, 4(1), 6. https://doi.org/10.1186/s40673-017-0064-8
  • Bora, E., Velakoulis, D., & Walterfang, M. (2016). Social cognition in Huntington’s disease: A meta-analysis. Behavioural Brain Research, 297, 131–140 .https://doi.org/10.1016/j.bbr.2015.10.001
  • Borghi, A., Scorolli, C., Caligiore, D., Baldassarre, G., & Tummolini, L. (2013). The embodied mind extended: Using words as social tools. Frontiers in Psychology, 4, 214. https://doi.org/10.3389/fpsyg.2013.00214 https://doi.org/10.3389/fpsyg.2013.00214
  • Borgomaneri, S., Bolloni, C., Sessa, P., Avenanti, A., & Urgesi, C. (2020). Blocking facial mimicry affects recognition of facial and body expressions. PLOS ONE, 15(2), e0229364. https://doi.org/10.1371/journal.pone.0229364
  • Borgomaneri, S., Zanon, M., Di Luzio, P., Cataneo, A., Arcara, G., Romei, V., Tamietto, M., Avenanti, A. (2023). Increasing associative plasticity in temporo-occipital back-projections improves visual perception of emotions from facial stimuli Nature Communications, Accepted in principle.
  • Bostan, A. C., Dum, R. P., & Strick, P. L. (2010). The basal ganglia communicate with the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 107, 8452–8456. https://doi.org/10.1073/pnas.1000496107
  • Bostan, A. C., & Strick, P. L. (2018). The basal ganglia and the cerebellum: Nodes in an integrated network. Nature Reviews Neuroscience, 19, 338–350. https://doi.org/10.1038/s41583-018-0002-7
  • Boucher, J. (2012). Putting theory of mind in its place: Psychological explanations of the socio-emotional-communicative impairments in autistic spectrum disorder. Autism, 16(3), 226–246. https://doi.org/10.1177/1362361311430403
  • Breakefield, X. O., Blood, A. J., Li, Y., Hallett, M., Hanson, P. I., & Standaert, D. G. (2008). The pathophysiological basis of dystonias. Nature Reviews Neuroscience, 9, 222–234. https://doi.org/10.1038/nrn2337
  • Brüggemann, N. (2021). Contemporary functional neuroanatomy and pathophysiology of dystonia. Journal of Neural Transmission, 128, 499–508. https://doi.org/10.1007/s00702-021-02299-y
  • Brüne, M., Hein, S. M., Claassen, C., Hoffmann, R., & Saft, C. (2021). Altered third‐party punishment in Huntington’s disease: A study using neuroeconomic games. Brain and Behavior, 11(1), 11. https://doi.org/10.1002/brb3.1908
  • Buch, E. R., Johnen, V. M., Nelissen, N., O’Shea, J., & Rushworth, M. F. S. (2011). Noninvasive associative plasticityiInduction in a corticocortical pathway of the human brain. The Journal of Neuroscience, 31, 17669–17679. https://doi.org/10.1523/JNEUROSCI.1513-11.2011
  • Bufalari, I., Aprile, T., Avenanti, A., DiRusso, F., & Aglioti, S. M. (2007). Empathy for pain and touch in the human somatosensory cortex. Cerebral Cortex, 17(11), 2553–2561. https://doi.org/10.1093/cercor/bhl161
  • Burke, T., Monaghan, R., McCormack, D., Cogley, C., Pinto-Grau, M., O’Connor, S., Donohoe, B., Murphy, L., O’Riordan, S., Ndukwe, I., Hutchinson, M., Pender, N., & O’Keeffe, F. (2020). Social cognition in cervical dystonia: A case-control study. Clinical Parkinsonism & Related Disorders, 3, 100072. https://doi.org/10.1016/j.prdoa.2020.100072
  • Calder, A. J. (1996). Facial emotion recognition after bilateral amygdala damage: Differentially severe impairment of fear. Cognitive Neuropsychology, 13(5), 699–745. https://doi.org/10.1080/026432996381890
  • Carlson, S. M., Moses, L. J., & Breton, C. (2002). How specific is the relation between executive function and theory of mind? Contributions of inhibitory control and working memory. Infant and Child Development, 11(2), 73–92. https://doi.org/10.1002/icd.298
  • Carrington, S. J., & Bailey, A. J. (2009). Are there theory of mind regions in the brain? A review of the neuroimaging literature. Human Brain Mapping, 30(8), 2313–2335. https://doi.org/10.1002/hbm.20671
  • Casula, A., Milazzo, B. M., Martino, G., Sergi, A., Lucifora, C., Tomaiuolo, F., Quartarone, A., Nitsche, M. A., & Vicario, C. M. (2023). Non-invasive brain stimulation for the modulation of aggressive behavior—A systematic review of randomized sham-controlled studies. Life, 13(5), 1220. https://doi.org/10.3390/life13051220
  • Cattaneo, Z., Ferrari, C., Ciricugno, A., Heleven, E., Schutter, D. J. L. G., Manto, M., & Van Overwalle, F. (2021). New horizons on non-invasive brain stimulation of the social and affective cerebellum. The Cerebellum, 21(3), 482–496. https://doi.org/10.1007/s12311-021-01300-4
  • Cerasa, A., & Quattrone, A. (2016). Linking essential tremor to the cerebellum—neuroimaging evidence. The Cerebellum, 15(3), 263–275. https://doi.org/10.1007/s12311-015-0739-8
  • Channon, S., Drury, H., Gafson, L., Stern, J., & Robertson, M. M. (2012). Judgements of social inappropriateness in adults with Tourette’s syndrome. Cognitive Neuropsychiatry, 17, 246–261. https://doi.org/10.1080/13546805.2011.590689 3
  • Channon, S., Sinclair, E., Waller, D., Healey, L., & Robertson, M. M. (2004). Social cognition in Tourette’s syndrome: Intact theory of mind and impaired inhibitory functioning. Journal of Autism & Developmental Disorders, 34, 669–677. https://doi.org/10.1007/s10803-004-5287-x
  • Chiappini, E., Borgomaneri, S., Marangon, M., Turrini, S., Romei, V., & Avenanti, A. (2020). Driving associative plasticity in premotor-motor connections through a novel paired associative stimulation based on long-latency cortico-cortical interactions. Brain Stimulation, 13, 1461–1463. https://doi.org/10.1016/j.brs.2020.08.003
  • Chiappini, E., Sel, A., Hibbard, P. B., Avenanti, A., & Romei, V. (2022). Increasing interhemispheric connectivity between human visual motion areas uncovers asymmetric sensitivity to horizontal motion. Current Biology, 32(18), 4064–4070.e3. https://doi.org/10.1016/j.cub.2022.07.050
  • Chiappini, E., Silvanto, J., Hibbard, P. B., Avenanti, A., & Romei, V. (2018). Strengthening functionally specific neural pathways with transcranial brain stimulation. Current Biology, 28(13), R735–R736. https://doi.org/10.1016/j.cub.2018.05.083
  • Coenen, M. A., Eggink, H., Spikman, J. M., & Tijssen, M. A. (2021). Cognition in children and young adults with myoclonus dystonia – a case control study. Parkinsonism & Related Disorders, 89, 162–166. https://doi.org/10.1016/j.parkreldis.2021.07.016
  • Corradi-Dell’acqua, C., Tusche, A., Vuilleumier, P., & Singer, T. (2016). Cross-modal representations of first-hand and vicarious pain, disgust and fairness in insular and cingulate cortex. Nature Communications, 7, 10904. https://doi.org/10.1038/ncomms10904
  • Costafreda, S. G., Brammer, M. J., David, A. S., & Fu, C. H. Y. (2008). Predictors of amygdala activation during the processing of emotional stimuli: A meta-analysis of 385 PET and fMRI studies. Brain Research Reviews, 58(1), 57–70. https://doi.org/10.1016/j.brainresrev.2007.10.012
  • Coundouris, S. P., Adams, A. G., Grainger, S. A., & Henry, J. D. (2019). Social perceptual function in Parkinson’s disease: A meta-analysis. Neuroscience & Biobehavioral Reviews, 104, 255–267. https://doi.org/10.1016/j.neubiorev.2019.07.011
  • Coundouris, S. P., Adams, A. G., & Henry, J. D. (2020). Empathy and theory of mind in Parkinson’s disease: A meta-analysis. Neuroscience & Biobehavioral Reviews, 109, 92–102. https://doi.org/10.1016/j.neubiorev.2019.12.030
  • Craparo, G., Gori, A., Dell’aera, S., Costanzo, G., Fasciano, S., Tomasello, A., & Vicario, C. M. (2016). Impaired emotion recognition is linked to alexithymia in heroin addicts. PeerJ, 4, e1864. https://doi.org/10.7717/peerj.1864
  • Cuff, B. M. P., Brown, S. J., Taylor, L., & Howat, D. J. (2016). Empathy: A review of the concept. Emotion Review, 8(2), 144–153. https://doi.org/10.1177/1754073914558466
  • Czekóová, K., Zemánková, P., Shaw, D. J., & Bareš, M. (2017). Social cognition and idiopathic isolated cervical dystonia. Journal of Neural Transmission, 124, 1097–1104. https://doi.org/10.1007/s00702-017-1725-8
  • Daher, K., Capallera, M., Lucifora, C., Casas, J., Meteier, Q., & El Kamali, M. (2021). Empathic interactions in Automated Vehicles #EmpathicCHI. in Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama Japan: ACM), 1–4. https://doi.org/10.1145/3411763.3441359.
  • Decety, J., & Cacioppo, J. T., (Eds.). (2011). The Oxford Handbook of Social Neuroscience. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195342161.001.0001
  • Deen, B., Koldewyn, K., Kanwisher, N., & Saxe, R. (2015). Functional organization of social perception and cognition in the superior temporal sulcus. Cerebral Cortex, 25(11), 4596–4609. https://doi.org/10.1093/cercor/bhv111
  • De Gelder, B., Van Den Stock, J., Meeren, H. K. M., Sinke, C. B. A., Kret, M. E., & Tamietto, M. (2010). Standing up for the body. Recent progress in uncovering the networks involved in the perception of bodies and bodily expressions. Neuroscience & Biobehavioral Reviews, 34(4), 513–527. https://doi.org/10.1016/j.neubiorev.2009.10.008
  • Den Dunnen, W. F. A. (2013). Neuropathological diagnostic considerations in hyperkinetic movement disorders. Frontiers in Neurology, 4, 7. https://doi.org/10.3389/fneur.2013.00007
  • Di Giuda, D., Camardese, G., Bentivoglio, A. R., Cocciolillo, F., Guidubaldi, A., Pucci, L., Bruno, I., Janiri, L., Giordano, A., & Fasano, A. (2012). Dopaminergic dysfunction and psychiatric symptoms in movement disorders: A 123I-FP-CIT SPECT study. European Journal of Nuclear Medicine and Molecular Imaging, 39(12), 1937–1948. https://doi.org/10.1007/s00259-012-2232-7
  • Di Luzio, P., Tarasi, L., Silvanto, J., Avenanti, A., Romei, V., & Pack, C. (2022). Human perceptual and metacognitive decision-making rely on distinct brain networks. PLOS Biology, 20(8), e3001750. https://doi.org/10.1371/journal.pbio.3001750
  • Downing, P. E., & Peelen, M. V. (2016). Body selectivity in occipitotemporal cortex: Causal evidence. Neuropsychologia, 83, 138–148. https://doi.org/10.1016/j.neuropsychologia.2015.05.033
  • Drury, H., Channon, S., Barrett, R., Young, M.-B., Stern, J. S., & Simmons, H., et al. (2012). Emotional processing and executive functioning in children and adults with Tourette’s syndrome. Child Neuropsychology, 18, 281–298. https://doi.org/10.1080/09297049.2011.613811
  • Drury, H., Shah, S., Stern, J. S., Crawford, S., & Channon, S. (2018). Comprehension of direct and indirect sarcastic remarks in children and adolescents with Tourette’s syndrome. Child Neuropsychology, 24(4), 490–509. https://doi.org/10.1080/09297049.2017.1284777
  • Eddy, C. M., & Cavanna, A. E. (2015). Triangles, tricks and tics: Hyper-mentalizing in response to animated shapes in Tourette syndrome. Cortex, 71, 68–75. https://doi.org/10.1016/j.cortex.2015.06.003
  • Eddy, C. M., Cavanna, A. E., & Hansen, P. C. (2017). Empathy and aversion: The neural signature of mentalizing in Tourette syndrome. Psychological Medicine, 47, 507–517. https://doi.org/10.1017/S0033291716002725
  • Eddy, C. M., Cavanna, A. E., Rickards, H. E., & Hansen, P. C. (2016). Temporo-parietal dysfunction in Tourette syndrome: Insights from an fMRI study of theory of mind. Journal of Psychiatric Research, 81, 102–111. https://doi.org/10.1016/j.jpsychires.2016.07.002
  • Eddy, C. M., Macerollo, A., Martino, D., & Cavanna, A. E. (2015). Interpersonal reactivity differences in Tourette syndrome. Psychiatry Research, 228(3), 932–935. https://doi.org/10.1016/j.psychres.2015.05.070
  • Eddy, C. M., Mitchell, I. J., Beck, S. R., Cavanna, A. E., & Rickards, H. (2011). Social reasoning in Tourette syndrome. Cognitive Neuropsychiatry, 16(4), 326–347. https://doi.org/10.1080/13546805.2010.538213
  • Eddy, C. M., Mitchell, I. J., Beck, S. R., Cavanna, A. E., & Rickards, H. E. (2010a). Altered attribution of Intention in Tourette’s syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, 22(3), 348–351. https://doi.org/10.1176/jnp.2010.22.3.348
  • Eddy, C. M., Mitchell, I. J., Beck, S. R., Cavanna, A. E., & Rickards, H. E. (2010b). Impaired comprehension of nonliteral language in Tourette syndrome. Cognitive and Behavioral Neurology, 23(3), 178–184. https://doi.org/10.1097/WNN.0b013e3181e61cb7
  • Eddy, C. M., Rickards, H. E., & Hansen, P. C. (2018). Through your eyes or mine? The neural correlates of mental state recognition in Huntington’s disease. Human Brain Mapping, 39, 1354–1366. https://doi.org/10.1002/hbm.23923
  • Eidelberg, D., Moeller, J. R., Antonini, A., Kazumata, K., Nakamura, T., Dhawan, V., Spetsieris, P., DeLeon, D., Bressman, S. B., & Fahn, S. (1998). Functional brain networks in DYT1 dystonia. Annals of Neurology, 44(3), 303–312. https://doi.org/10.1002/ana.410440304
  • Ellement, B., Jasaui, Y., Kathol, K., Nosratmirshekarlou, E., Pringsheim, T., Sarna, J., Callahan, B. L., & Martino, D. (2021). Social cognition in cervical dystonia: Phenotype and relationship to anxiety and depression. European Journal of Neurology, 28(1), 98–107. https://doi.org/10.1111/ene.14508
  • Eslinger, P. J., Moore, P., Anderson, C., & Grossman, M. (2011). Social cognition, executive functioning, and neuroimaging correlates of empathic deficits in frontotemporal dementia. The Journal of neuropsychiatry and clinical neurosciences, 23(1),74–82. https://doi.org/10.1176/jnp.23.1.jnp74
  • Espay, A. J., Maloney, T., Vannest, J., Norris, M. M., Eliassen, J. C., Neefus, E., Allendorfer, J. B., Chen, R., & Szaflarski, J. P. (2018a). Dysfunction in emotion processing underlies functional (psychogenic) dystonia: Abnormalities in emotion processing and dystonia. Movement Disorders, 33(1), 136–145. https://doi.org/10.1002/mds.27217
  • Espay, A. J., Maloney, T., Vannest, J., Norris, M. M., Eliassen, J. C., Neefus, E., Allendorfer, J. B., Lang, A. E., & Szaflarski, J. P. (2018b). Impaired emotion processing in functional (psychogenic) tremor: A functional magnetic resonance imaging study. NeuroImage: Clinical, 17, 179–187. https://doi.org/10.1016/j.nicl.2017.10.020
  • Etchepare, A., & Prouteau, A. (2018). Toward a two-dimensional model of social cognition in clinical neuropsychology: A systematic review of factor structure studies. Journal of the International Neuropsychological Society, 24(4), 391–404. https://doi.org/10.1017/S1355617717001163
  • Fahn, S. (2011). Classification of movement disorders. Movement Disorders, 26, 947–957. https://doi.org/10.1002/mds.23759
  • Fahn, S., Jankovic, J., & Hallett, M. (2011). Clinical overview and phenomenology of movement disorders. In S. Fahn, J. Jankovic, & M. Hallett (Eds.), Principles and Practice of Movement Disorders ((Second Edition), pp. 1–35). W.B. Saunders. https://doi.org/10.1016/B978-1-4377-2369-4.00001-9
  • Fan, Y., Duncan, N. W., De Greck, M., & Northoff, G. (2011). Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neuroscience & Biobehavioral Reviews, 35, 903–911. https://doi.org/10.1016/j.neubiorev.2010.10.009
  • Felling, R. J., & Singer, H. S. (2011). Neurobiology of Tourette syndrome: Current status and need for further investigation. The Journal of Neuroscience, 31(35), 12387–12395. https://doi.org/10.1523/JNEUROSCI.0150-11.2011
  • Ferrucci, R., Giannicola, G., Rosa, M., Fumagalli, M., Boggio, P. S., Hallett, M., Zago, S., & Priori, A. (2012). Cerebellum and processing of negative facial emotions: Cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cognition & Emotion, 26(5), 786–799. https://doi.org/10.1080/02699931.2011.619520
  • Fiori, F., Chiappini, E., & Avenanti, A. (2018). Enhanced action performance following TMS manipulation of associative plasticity in ventral premotor-motor pathway. NeuroImage, 183, 847–858. https://doi.org/10.1016/j.neuroimage.2018.09.002
  • Franklin, G. L., Camargo, C. H. F., Meira, A. T., Lima, N. S. C., & Teive, H. A. G. (2021). The role of the cerebellum in Huntington’s disease: A systematic review. The Cerebellum, 20(2), 254–265. https://doi.org/10.1007/s12311-020-01198-4
  • Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in Parkinsonism. Science, 306(5703), 1940–1943. https://doi.org/10.1126/science.1102941
  • Gagné, J.-P. (2019). The psychology of Tourette disorder: Revisiting the past and moving toward a cognitively-oriented future. Clinical Psychology Review, 67, 11–21. https://doi.org/10.1016/j.cpr.2018.09.005
  • Gallagher, H. L., & Frith, C. D. (2003). Functional imaging of ‘theory of mind’. Trends in Cognitive Sciences, 7(2), 77–83. https://doi.org/10.1016/S1364-6613(02)00025-6
  • Gallese, V., & Sinigaglia, C. (2011). What is so special about embodied simulation? Trends in Cognitive Sciences, 15(11), 512–519. https://doi.org/10.1016/j.tics.2011.09.003
  • Gallo, S., Paracampo, R., Müller-Pinzler, L., Severo, M. C., Blömer, L., Fernandes-Henriques, C., Henschel, A., Lammes, B. K., Maskaljunas, T., Suttrup, J., Avenanti, A., Keysers, C., & Gazzola, V. (2018). The causal role of the somatosensory cortex in prosocial behaviour. eLife, 7, e32740. https://doi.org/10.7554/eLife.32740
  • Ganos, C. (2016). Tics and Tourette’s: Update on pathophysiology and tic control. Current Opinion in Neurology, 29, 513. https://doi.org/10.1097/WCO.0000000000000356 4
  • Ganos, C., & Martino, D. (2015). Tics and Tourette syndrome. Neurologic Clinics, 33(1), 115–136. https://doi.org/10.1016/j.ncl.2014.09.008
  • Gatev, P., Darbin, O., & Wichmann, T. (2006). Oscillations in the basal ganglia under normal conditions and in movement disorders. Movement Disorders, 21, 1566–1577. https://doi.org/10.1002/mds.21033
  • Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4, 179–192. https://doi.org/10.1038/nrn1057
  • Grasso, G., Lucifora, C., Perconti, P., & Plebe, A. (2019). Evaluating mentalization during driving: in Proceedings of the 5th International Conference on Vehicle Technology and Intelligent Transport Systems (Heraklion, Crete, Greece: SCITEPRESS - Science and Technology Publications), 536–541. https://doi.org/10.5220/0007756505360541.
  • Grasso, G. M., Lucifora, C., Perconti, P., & Plebe, A. (2020). Integrating human acceptable morality in autonomous vehicles. In T. Ahram, W. Karwowski, A. Vergnano, F. Leali, & R. Taiar (Eds.), Intelligent Human Systems Integration 2020. IHSI 2020. Advances in Intelligent Systems and Computing 1131 (pp. 41–45). Springer Cham. https://doi.org/10.1007/978-3-030-39512-4_7
  • Green, M. F., Horan, W. P., & Lee, J. (2015). Social cognition in schizophrenia. Nature Reviews Neuroscience, 16, 620–631. https://doi.org/10.1038/nrn4005
  • Hallett, M. (2014). Tremor: Pathophysiology. Parkinsonism & Related Disorders, 20, S118–S122. https://doi.org/10.1016/S1353-8020(13)70029-4
  • Hasson-Ohayon, I., Mashiach-Eizenberg, M., Arnon-Ribenfeld, N., Kravetz, S., & Roe, D. (2017). Neuro-cognition and social cognition elements of social functioning and social quality of life. Psychiatry Research, 258, 538–543. https://doi.org/10.1016/j.psychres.2017.09.004
  • Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223–233. https://doi.org/10.1016/S1364-6613(00)01482-0
  • Hayes, C. J., Stevenson, R. J., & Coltheart, M. (2007). Disgust and Huntington’s disease. Neuropsychologia, 45, 1135–1151. https://doi.org/10.1016/j.neuropsychologia.2006.10.015
  • Heleven, E., & Van Overwalle, F. (2018). The neural basis of representing others’ inner states. Current Opinion in Psychology, 23, 98–103. https://doi.org/10.1016/j.copsyc.2018.02.003.
  • Hendrix, C. M., & Vitek, J. L. (2012). Toward a network model of dystonia. Annals of the New York Academy of Sciences, 1265, 46–55. https://doi.org/10.1111/j.1749-6632.2012.06692.x
  • Henry, J. D., Von Hippel, W., Molenberghs, P., Lee, T., & Sachdev, P. S. (2016). Clinical assessment of social cognitive function in neurological disorders. Nature Reviews Neurology, 12, 28–39. https://doi.org/10.1038/nrneurol.2015.229
  • Hopfner, F., & Deuschl, G. (2018). Is essential tremor a single entity? European Journal of Neurology, 25, 71–82. https://doi.org/10.1111/ene.13454
  • Hünefeldt, T., Maffi, S., Migliore, S., Squitieri, F., & Belardinelli, M. O. (2020). Emotion recognition and inhibitory control in manifest and pre-manifest Huntington’s disease: Evidence from a new Stroop task. Neural Regeneration Research, 15, 8, 1518–1520. https://doi.org/10.4103/1673-5374.274342
  • Ille, R., Holl, A. K., Kapfhammer, H.-P., Reisinger, K., Schäfer, A., & Schienle, A. (2011). Emotion recognition and experience in Huntington’s disease: Is there a differential impairment? Psychiatry Research, 188, 377–382. https://doi.org/10.1016/j.psychres.2011.04.007 3
  • Jankovic, J. (2009). Treatment of hyperkinetic movement disorders. The Lancet Neurology, 8(9), 844–856. https://doi.org/10.1016/S1474-4422(09)70183-8
  • Jastorff, J., Popivanov, I. D., Vogels, R., Vanduffel, W., & Orban, G. A. (2012). Integration of shape and motion cues in biological motion processing in the monkey STS. NeuroImage, 60(2), 911–921. https://doi.org/10.1016/j.neuroimage.2011.12.087
  • Jimenez-Sanchez, M., Licitra, F., Underwood, B. R., & Rubinsztein, D. C. (2017). Huntington’s disease: Mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harbor Perspectives in Medicine, 7, a024240. https://doi.org/10.1101/cshperspect.a024240
  • Jinnah, H. A., Neychev, V., & Hess, E. J. (2017). The Anatomical basis for dystonia: The motor network model. Tremor and Other Hyperkinetic Movements, 7, 506. https://doi.org/10.7916/D8V69X3S
  • Kalsi, N., Tambelli, R., Altavilla, D., Trentini, C., Panunzi, S., Stanca, M., Aceto, P., Cardona, F., & Lai, C. (2019). Neurophysiological correlate of emotional regulation in cognitive and motor deficits in Tourette’s syndrome. The World Journal of Biological Psychiatry, 20(8), 647–661. https://doi.org/10.1080/15622975.2018.1430375
  • Kanwisher, N., & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 2109–2128. https://doi.org/10.1098/rstb.2006.1934
  • Keysers, C., Kaas, J. H., & Gazzola, V. (2010). Somatosensation in social perception. Nature Reviews Neuroscience, 11, 417–428. https://doi.org/10.1038/nrn2833
  • Klaming, R., & Annese, J. (2014). Functional anatomy of essential tremor: Lessons from neuroimaging. American Journal of Neuroradiology, 35(8), 1450–1457. https://doi.org/10.3174/ajnr.A3586
  • Kojovic, M., Pareés, I., Kassavetis, P., Palomar, F. J., Mir, P., Teo, J. T., Cordivari, C., Rothwell, J. C., Bhatia, K. P., & Edwards, M. J. (2013). Secondary and primary dystonia: Pathophysiological differences. Brain, 136(7), 2038–2049. https://doi.org/10.1093/brain/awt150
  • Kordsachia, C. C., Labuschagne, I., Andrews, S. C., & Stout, J. C. (2018a). Diminished facial EMG responses to disgusting scenes and happy and fearful faces in Huntington’s disease. Cortex, 106, 185–199. https://doi.org/10.1016/j.cortex.2018.05.019
  • Kordsachia, C. C., Labuschagne, I., & Stout, J. C. (2018b). Visual scanning of the eye region of human faces predicts emotion recognition performance in Huntington’s disease. Neuropsychology, 32(3), 356–365. https://doi.org/10.1037/neu0000424
  • Koziol, L. F., Budding, D. E., & Chidekel, D. (2012). From movement to thought: Executive function, embodied cognition, and the cerebellum. The Cerebellum, 11(2), 505–525. https://doi.org/10.1007/s12311-011-0321-y
  • Krall, S. C., Rottschy, C., Oberwelland, E., Bzdok, D., Fox, P. T., Eickhoff, S. B., Fink, G. R., & Konrad, K. (2015). The role of the right temporoparietal junction in attention and social interaction as revealed by ALE meta-analysis. Brain Structure & Function, 220(2), 587–604. https://doi.org/10.1007/s00429-014-0803-z
  • Labuschagne, I., Poudel, G., Kordsachia, C., Wu, Q., Thomson, H., & Georgiou-Karistianis, N., Stout, J C. (2018). Oxytocin selectively modulates brain processing of disgust in Huntington’s disease gene carriers. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 81, 11–16. https://doi.org/10.1016/j.pnpbp.2017.09.023
  • Lagravinese, G., Avanzino, L., Raffo De Ferrari, A., Marchese, R., Serrati, C., Mandich, P., Abbruzzese, G., & Pelosin, E. (2017). Theory of mind is impaired in mild to moderate Huntington’s disease Independently from global cognitive functioning. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.00080
  • Lagravinese, G., Santangelo, G., Bonassi, G., Cuoco, S., Marchese, R., DiBiasio, F., Erro, R., Pelosin, E., & Avanzino, L. (2021). Affective and cognitive theory of mind in patients with cervical dystonia with and without tremor. Journal of Neural Transmission, 128(2), 199–206. https://doi.org/10.1007/s00702-020-02237-4
  • Lamm, C., Rütgen, M., & Wagner, I. C. (2019). Imaging empathy and prosocial emotions. Neuroscience Letters, 693, 49–53. https://doi.org/10.1016/j.neulet.2017.06.054
  • La Rosa, V., Gori, A., Faraci, P., Vicario, C., & Craparo, G. (2022). Traumatic distress, alexithymia, dissociation, and risk of addiction during the first wave of COVID-19 in Italy: Results from a cross-sectional online survey on a non-clinical adult sample. International Journal of Mental Health and Addiction, 20(5), 3128–3144. https://doi.org/10.1007/s11469-021-00569-0
  • Larsen, I. U., Vinther-Jensen, T., Gade, A., Nielsen, J. E., & Vogel, A. (2016). Do I misconstrue? Sarcasm detection, emotion recognition, and theory of mind in Huntington disease. Neuropsychology, 30(2), 181–189. https://doi.org/10.1037/neu0000224
  • Lefaucheur, J.-P., Aleman, A., Baeken, C., Benninger, D. H., Brunelin, J., DiLazzaro, V., Filipović, S. R., Grefkes, C., Hasan, A., Hummel, F. C., Jääskeläinen, S. K., Langguth, B., Leocani, L., Londero, A., Nardone, R., Nguyen, J.-P., Nyffeler, T., Oliveira-Maia, A. J. … Szekely, D. (2020). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clinical Neurophysiology, 131(2), 474–528. https://doi.org/10.1016/j.clinph.2019.11.002
  • Leggio, M., & Molinari, M. (2015). Cerebellar Sequencing: A Trick for Predicting the future. The Cerebellum, 14(1), 35–38. https://doi.org/10.1007/s12311-014-0616-x
  • Lerner, A., Bagic, A., Boudreau, E. A., Hanakawa, T., Pagan, F., Mari, Z., Bara-Jimenez, W., Aksu, M., Garraux, G., Simmons, J. M., Sato, S., Murphy, D. L., & Hallett, M. (2007). Neuroimaging of neuronal circuits involved in tic generation in patients with Tourette syndrome. Neurology, 68(23), 1979–1987. https://doi.org/10.1212/01.wnl.0000264417.18604.12
  • Louis, E. D. (2018). Essential tremor and the cerebellum. In Manto, M., Huisman, T. A. G. M. (Eds.), The Cerebellum: Disorders and Treatment. Handbook of Clinical Neurology (pp. 245–258). Elsevier. https://doi.org/10.1016/B978-0-444-64189-2.00016-0
  • Louis, E. D. (2019). Tremor. Continuum: Lifelong Learning in Neurology., 25(4), 959–975. https://doi.org/10.1212/CON.0000000000000748
  • Louis, E. D., & Faust, P. L. (2020). Essential tremor pathology: Neurodegeneration and reorganization of neuronal connections. Nature Reviews Neurology, 16, 69–83. https://doi.org/10.1038/s41582-019-0302-1
  • Lucifora, C., Angelini, L., Meteier, Q., Vicario, C. M., Khaled, O. A., Mugellini, E., & Grasso, G. M. (2021a). Cyber-Therapy: The use of artificial intelligence in psychological practice. In D. Russo, T. Ahram, W. Karwowski, G. Di Bucchianico, & R. Taiar (Eds.), Intelligent Human Systems Integration 2021 Advances in Intelligent Systems and Computing (pp. 127–132). Springer International Publishing. https://doi.org/10.1007/978-3-030-68017-6_19
  • Lucifora, C., Grasso, G. M., Perconti, P., & Plebe, A. (2020). Moral dilemmas in self-driving cars. Rivista internazionale di Filosofia e Psicologia, 238–250. https://doi.org/10.4453/rifp.2020.0015
  • Lucifora, C., Grasso, G. M., Perconti, P., & Plebe, A. (2021b). Moral reasoning and automatic risk reaction during driving. Cognition, Technology & Work, 23(4), 705–713. https://doi.org/10.1007/s10111-021-00675-y
  • Lucifora, C., Martino, G., Curcuruto, A., Salehinejad, M. A., & Vicario, C. M. (2021c). How Self-Control Predicts Moral Decision Making: An Exploratory Study on Healthy Participants.Int. J Environ Res Public Health, 18 (7), 3840. https://doi.org/10.3390/ijerph18073840
  • Lu, M.-K., Tsai, C.-H., & Ziemann, U. (2012). Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex. Frontiers in Human Neuroscience, 6, 260. https://doi.org/10.3389/fnhum.2012.00260
  • Markovic, V., Vicario, C. M., Yavari, F., Salehinejad, M. A., & Nitsche, M. A. (2021). A systematic review on the effect of transcranial direct current and magnetic stimulation on fear memory and extinction. Frontiers in Human Neuroscience, 15, 655947. https://doi.org/10.3389/fnhum.2021.655947
  • Martino, G., Caputo, A., Vicario, C. M., Feldt-Rasmussen, U., Watt, T., Quattropani, M. C., Benvenga, S., & Vita, R. (2021). Alexithymia, emotional distress, and perceived quality of life in patients with Hashimoto’s thyroiditis. Frontiers in Psychology, 12, 667237. https://doi.org/10.3389/fpsyg.2021.667237
  • Maurage, P., Lahaye, M., Grynberg, D., Jeanjean, A., Guettat, L., Verellen-Dumoulin, C., Halkin, S., Heeren, A., Billieux, J., & Constant, E. (2016). Dissociating emotional and cognitive empathy in pre-clinical and clinical Huntington’s disease. Psychiatry Research, 237, 103–108. https://doi.org/10.1016/j.psychres.2016.01.070
  • Mavroudis, I., Petrides, F., Karantali, E., Chatzikonstantinou, S., McKenna, J., Ciobica, A., Iordache, A.-C., Dobrin, R., Trus, C., & Kazis, D. (2021). A Voxel-wise meta-analysis on the cerebellum in essential tremor. Medicina, 57(3), 264. https://doi.org/10.3390/medicina57030264
  • Mermillod, M., Devaux, D., Derost, P., Rieu, I., Chambres, P., Auxiette, C., Legrand, G., Galland, F., Dalens, H., Coulangeon, L. M., Broussolle, E., Durif, F., & Jalenques, I. (2013). Rapid presentation of emotional expressions reveals new emotional impairments in Tourette’s syndrome. Frontiers in Human Neuroscience, 7, 149. https://doi.org/10.3389/fnhum.2013.00149
  • Mitchell, R. L. C., Elliott, R., Barry, M., Cruttenden, A., & Woodruff, P. W. R. (2003). The neural response to emotional prosody, as revealed by functional magnetic resonance imaging. Neuropsychologia, 41(10), 1410–1421. https://doi.org/10.1016/S0028-3932(03)00017-4
  • Mitchell, I. J., Heims, H., Neville, E. A., & Rickards, H. (2005). Huntington’s disease patients show impaired perception of disgust in the gustatory and olfactory modalities. The Journal of Neuropsychiatry and Clinical Neurosciences, 17(1), 119–121. https://doi.org/10.1176/jnp.17.1.119
  • Montague, P. R., Hyman, S. E., & Cohen, J. D. (2004). Computational roles for dopamine in behavioural control. Nature, 431(7010), 760–767. https://doi.org/10.1038/nature03015
  • Müller-Vahl, K. R., Sambrani, T., & Jakubovski, E. (2019). Tic disorders revisited: Introduction of the term “tic spectrum disorders”. European Child & Adolescent Psychiatry, 28(8), 1129–1135. https://doi.org/10.1007/s00787-018-01272-7
  • Neuner, I., Kellermann, T., Stöcker, T., Kircher, T., Habel, U., & Shah, J. N., et al. (2010). Amygdala hypersensitivity in response to emotional faces in Tourette’s patients. The World Journal of Biological Psychiatry, 11, 858–872. https://doi.org/10.3109/15622975.2010.480984
  • Neychev, V. K., Gross, R. E., Lehéricy, S., Hess, E. J., & Jinnah, H. A. (2011). The functional neuroanatomy of dystonia. Neurobiology of Disease, 42(2), 185–201. https://doi.org/10.1016/j.nbd.2011.01.026
  • Nguyen, V. T., Sonkusare, S., Stadler, J., Hu, X., Breakspear, M., & Guo, C. C. (2017). Distinct cerebellar contributions to cognitive-perceptual dynamics during natural iewing. Cerebral Cortex, 27(12), 5652–5662. https://doi.org/10.1093/cercor/bhw334
  • Niedenthal, P. M., Mermillod, M., Maringer, M., & Hess, U. (2010). The simulation of Smiles (SIMS) model: Embodied simulation and the meaning of facial expression. Behavioral and Brain Sciences, 33(6), 417–433. https://doi.org/10.1017/S0140525X10000865
  • Nikolova, Z. T., Fellbrich, A., Born, J., Dengler, R., & Schröder, C. (2011). Deficient recognition of emotional prosody in primary focal dystonia. European Journal of Neurology, 18(2), 329–336. https://doi.org/10.1111/j.1468-1331.2010.03144.x
  • Olivetti Belardinelli, M., Hünefeldt, T., Meloni, R., Squitieri, F., Maffi, S., & Migliore, S. (2021). Abnormal visual scanning and impaired mental state recognition in pre-manifest Huntington disease. Experimental Brain Research, 239, 141–150. https://doi.org/10.1007/s00221-020-05957-x
  • Osborne-Crowley, K., Andrews, S. C., Labuschagne, I., Nair, A., Scahill, R., Craufurd, D., Tabrizi, S. J., & Stout, J. C. (2019). Apathy associated with impaired recognition of happy facial expressions in Huntington’s disease. Journal of the International Neuropsychological Society, 25(05), 453–461. https://doi.org/10.1017/S1355617718001224
  • Padron-Rivera, G., Diaz, R., Vaca-Palomares, I., Ochoa, A., Hernandez-Castillo, C. R., & Fernandez-Ruiz, J. (2021). Cerebellar degeneration signature in Huntington’s disease. The Cerebellum, 20(6), 942–945. https://doi.org/10.1007/s12311-021-01256-5
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E. , and Whiting, P. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
  • Paracampo, R., Montemurro, M., De Vega, M., & Avenanti, A. (2018a). Primary motor cortex crucial for action prediction: A tDCS study. Cortex, 109, 287–302. https://doi.org/10.1016/j.cortex.2018.09.019
  • Paracampo, R., Pirruccio, M., Costa, M., Borgomaneri, S., & Avenanti, A. (2018b). Visual, sensorimotor and cognitive routes to understanding others’ enjoyment: An individual differences rTMS approach to empathic accuracy. Neuropsychologia, 116, 86–98. https://doi.org/10.1016/j.neuropsychologia.2018.01.043
  • Paracampo, R., Tidoni, E., Borgomaneri, S., diPellegrino, G., & Avenanti, A. (2017). Sensorimotor network crucial for inferring amusement from smiles. Cerebral Cortex, 27, 5116–5129. https://doi.org/10.1093/cercor/bhw294
  • Peelen, M. V., & Downing, P. E. (2007). The neural basis of visual body perception. Nature Reviews Neuroscience, 8, 636–648. https://doi.org/10.1038/nrn2195
  • Pennisi, P., Salehinejad, M. A., Corso, A. M., Merlo, E. M., Avenanti, A., & Vicario, C. M. (2023). Delay discounting in Parkinson’s disease: A systematic review and meta-analysis. Behavioural Brain Research, 436, 114101. https://doi.org/10.1016/j.bbr.2022.114101.
  • Peyroux, E., Santaella, N., Broussolle, E., Rigard, C., Favre, E., Brunet, A.-S., Bost, M., Lachaux, A., & Demily, C. (2017). Social cognition in Wilson’s disease: A new phenotype? PLoS ONE, 12(4), e0173467. https://doi.org/10.1371/journal.pone.0173467
  • Pezzulo, G., Barsalou, L., Cangelosi, A., Fischer, M., Spivey, M., & McRae, K. (2011). The mechanics of embodiment: A dialog on embodiment and computational modeling. Frontiers in Psychology, 2, 5. https://doi.org/10.3389/fpsyg.2011.00005
  • Philpott, A. L., Andrews, S. C., Staios, M., Churchyard, A., & Fisher, F. (2016). Emotion evaluation and social inference impairments in Huntington’s disease. Journal of Huntington’s Disease, 5(2), 175–183. https://doi.org/10.3233/JHD-160190
  • Phukan, J., Albanese, A., Gasser, T., & Warner, T. (2011). Primary dystonia and dystonia-plus syndromes: Clinical characteristics, diagnosis, and pathogenesis. The Lancet Neurology, 10(12), 1074–1085. https://doi.org/10.1016/S1474-4422(11)70232-0
  • Pierce, J. E., & Péron, J. (2020). The basal ganglia and the cerebellum in human emotion. Social Cognitive and Affective Neuroscience, 15(5), 599–613. https://doi.org/10.1093/scan/nsaa076
  • Pitcher, D., Dilks, D. D., Saxe, R. R., Triantafyllou, C., & Kanwisher, N. (2011). Differential selectivity for dynamic versus static information in face-selective cortical regions. NeuroImage, 56(4), 2356–2363. https://doi.org/10.1016/j.neuroimage.2011.03.067
  • Pitcher, D., Garrido, L., Walsh, V., & Duchaine, B. C. (2008). Transcranial magnetic stimulation disrupts the perception and embodiment of facial expressions. The Journal of Neuroscience, 28, 8929–8933. https://doi.org/10.1523/JNEUROSCI.1450-08.2008
  • Plessen, K. J., Bansal, R., & Peterson, B. S. (2009). Imaging evidence for anatomical disturbances and neuroplastic compensation in persons with Tourette syndrome. Journal of Psychosomatic Research, 67, 559–573. https://doi.org/10.1016/j.jpsychores.2009.07.005
  • Prudente, C. N., Hess, E. J., & Jinnah, H. A. (2014). Dystonia as a network disorder: What is the role of the cerebellum? Neuroscience, 260, 23–35. https://doi.org/10.1016/j.neuroscience.2013.11.062
  • Puig-Davi, A., Martinez-Horta, S., Sampedro, F., Horta-Barba, A., Perez-Perez, J., Campolongo, A., Izquierdo-Barrionuevo, C., Pagonabarraga, J., Gomez-Anson, B., & Kulisevsky, J. (2021). Cognitive and affective empathy in Huntington’s disease. Journal of Huntington’s Disease, 10(3), 323–334. https://doi.org/10.3233/JHD-210469
  • Rae, C. L., Polyanska, L., Gould Van Praag, C. D., Parkinson, J., Bouyagoub, S., Nagai, Y., Seth, A. K., Harrison, N. A., Garfinkel, S. N., & Critchley, H. D. (2018). Face perception enhances insula and motor network reactivity in Tourette syndrome. Brain, 141(11), 3249–3261. https://doi.org/10.1093/brain/awy254
  • Rafee, S., O’Keeffe, F., O’Riordan, S., Reilly, R., & Hutchinson, M. (2021). Adult onset dystonia: A disorder of the collicular–pulvinar–amygdala network. Cortex, 143, 282–289. https://doi.org/10.1016/j.cortex.2021.05.010
  • Rao, S. M., Mayer, A. R., & Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience, 4, 317–323. https://doi.org/10.1038/85191
  • Rinnerthaler, M., Benecke, C., Bartha, L., Entner, T., Poewe, W., & Mueller, J. (2006). Facial recognition in primary focal dystonia. Movement Disorders, 21, 78–82. https://doi.org/10.1002/mds.20659
  • Ritter, P., & Villringer, A. (2006). Simultaneous EEG–fMRI. Neuroscience & Biobehavioral Reviews, 30(6), 823–838. https://doi.org/10.1016/j.neubiorev.2006.06.008
  • Rizzolatti, G., & Sinigaglia, C. (2016). The mirror mechanism: A basic principle of brain function. Nature Reviews Neuroscience, 17, 757–765. https://doi.org/10.1038/nrn.2016.135
  • Roca, M. (2016). The relationship between executive functions and theory of mind: A long and winding road. Journal of Neurology, Neurosurgery, and Psychiatry, 87(3), 229–229. https://doi.org/10.1136/jnnp-2015-312568
  • Rokita, K. I., Dauvermann, M. R., & Donohoe, G. (2018). Early life experiences and social cognition in major psychiatric disorders: A systematic review. European Psychiatry, 53, 123–133. https://doi.org/10.1016/j.eurpsy.2018.06.006
  • Romei, V., Chiappini, E., Hibbard, P. B., & Avenanti, A. (2016). Empowering reentrant projections from V5 to V1 boosts sensitivity to motion. Current Biology, 26(16), 2155–2160. https://doi.org/10.1016/j.cub.2016.06.009
  • Santangelo, G., Trojano, L., Barone, P., Errico, D., Improta, I., Agosti, V., Grossi, D., Sorrentino, G., & Vitale, C. (2012). Cognitive and affective theory of mind in patients with essential tremor. Journal of Neurology, 260(2), 513–520. https://doi.org/10.1007/s00415-012-6668-2
  • Schirinzi, T., Sciamanna, G., Mercuri, N. B., & Pisani, A. (2018). Dystonia as a network disorder: A concept in evolution. Current Opinion in Neurology, 31(4), 498–503. https://doi.org/10.1097/WCO.0000000000000580
  • Schultz, W. (1998). Predictive reward Signal of dopamine neurons. Journal of Neurophysiology, 80(1), 1–27. https://doi.org/10.1152/jn.1998.80.1.1
  • Schultz, W. (2015). Neuronal reward and decision signals: From theories to data. Physiological Reviews, 95(3), 853–951. https://doi.org/10.1152/physrev.00023.2014
  • Schutter, D. J. L. G., Enter, D., & Hoppenbrouwers, S. S. (2009). High-frequency repetitive transcranial magnetic stimulation to the cerebellum and implicit processing of happy facial expressions. Journal of Psychiatry & Neuroscience, 34(1), 60–65.
  • Scottish Intercollegiate Guidelines Network (SIGN). (2012). Methodology checklist 4: case-control studies. https://www.sign.ac.uk/what-we-do/methodology/checklists
  • Seeley, W. W. (2019). The salience network: A neural system for perceiving and Responding to Homeostatic Demands. The Journal of Neuroscience, 39, 9878–9882. https://doi.org/10.1523/JNEUROSCI.1138-17.2019
  • Sesack, S. R., & Grace, A. A. (2010). Cortico-basal ganglia reward network: Microcircuitry. Neuropsychopharmacology, 35(1), 27–47. https://doi.org/10.1038/npp.2009.93
  • Shapiro, L. (2011). Embodied cognition. Routledge/Taylor & Francis Group.
  • Sharifi, S., Nederveen, A. J., Booij, J., & van Rootselaar, A.-F. (2014). Neuroimaging essentials in essential tremor: A systematic review. NeuroImage: Clinical, 5, 217–231. https://doi.org/10.1016/j.nicl.2014.05.003
  • Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 1157–1162. https://doi.org/10.1126/science.1093535
  • Sliwinska, M. W., & Pitcher, D. (2018). TMS demonstrates that both right and left superior temporal sulci are important for facial expression recognition. NeuroImage, 183, 394–400. https://doi.org/10.1016/j.neuroimage.2018.08.025
  • Sokolov, A. A. (2018). The cerebellum in social cognition. Frontiers in Cellular Neuroscience, 12, 145. https://doi.org/10.3389/fncel.2018.00145
  • Sokolov, A. A., Erb, M., Gharabaghi, A., Grodd, W., Tatagiba, M. S., & Pavlova, M. A. (2012). Biological motion processing: The left cerebellum communicates with the right superior temporal sulcus. NeuroImage, 59(3), 2824–2830. https://doi.org/10.1016/j.neuroimage.2011.08.039
  • Sprengelmeyer, R., Young, A. W., Baldas, E.-M., Ratheiser, I., Sutherland, C. A. M., & Müller, H.-P., et al. (2016). The neuropsychology of first impressions: Evidence from Huntington’s disease. Cortex, 85, 100–115. https://doi.org/10.1016/j.cortex.2016.10.006
  • Stocco, A., Lebiere, C., & Anderson, J. R. (2010). Conditional Routing of information to the cortex: A model of the basal ganglia’s role in cognitive Coordination. Psychological Review, 117, 541–574. https://doi.org/10.1037/a0019077
  • Subramanian, K., Brandenburg, C., Orsati, F., Soghomonian, J.-J., Hussman, J. P., & Blatt, G. J. (2017). Basal ganglia and autism - a translational perspective. Autism Research, 10(11), 1751–1775. https://doi.org/10.1002/aur.1837
  • Tabrizi, S. J., Flower, M. D., Ross, C. A., & Wild, E. J. (2020). Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities. Nature Reviews Neurology, 16, 529–546. https://doi.org/10.1038/s41582-020-0389-4
  • Tamietto, M., & de Gelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 11, 697–709. https://doi.org/10.1038/nrn2889
  • Tang, X., Ross, C. A., Johnson, H., Paulsen, J. S., Younes, L., & Albin, R. L., Ratnanather, J T., Miller, M I. (2019). Regional subcortical shape analysis in premanifest Huntington’s disease. Human Brain Mapping, 40, 1419–1433. https://doi.org/10.1002/hbm.24456 5
  • Taylor, G. J., & Bagby, R. M. (2013). Psychoanalysis and Empirical Research: The example of Alexithymia. Journal of the American Psychoanalytic Association, 61, 99–133. https://doi.org/10.1177/0003065112474066
  • Tewari, A., Fremont, R., & Khodakhah, K. (2017). It’s not just the basal ganglia: Cerebellum as a target for dystonia therapeutics. Movement Disorders, 32(11), 1537–1545. https://doi.org/10.1002/mds.27123
  • Tikoo, S., Suppa, A., Tommasin, S., Giannì, C., Conte, G., Mirabella, G., Cardona, F., & Pantano, P. (2021). Cerebellum in drug-naive children with Tourette syndrome and obsessive–compulsive disorder. The Cerebellum, 21(6), 867–878. https://doi.org/10.1007/s12311-021-01327-7
  • Tobe, R. H., Bansal, R., Xu, D., Hao, X., Liu, J., Sanchez, J., & Peterson, B. S. (2010). Cerebellar morphology in Tourette syndrome and obsessive-compulsive disorder. Annals of Neurology, 67(4), 479–487. https://doi.org/10.1002/ana.21918
  • Todorov, A., Said, C. P., Engell, A. D., & Oosterhof, N. N. (2008). Understanding evaluation of faces on social dimensions. Trends in Cognitive Sciences, 12(12), 455–460. https://doi.org/10.1016/j.tics.2008.10.001
  • Trajkovic, J., Romei, V., Rushworth, M. F. S., & Sel, A. (2023). Changing connectivity between premotor and motor cortex changes inter-areal communication in the human brain. Progress in Neurobiology, 228, 102487. https://doi.org/10.1016/j.pneurobio.2023.102487
  • Trinkler, I., Devignevielle, S., Achaibou, A., Ligneul, R. V., Brugières, P., & Cleret De Langavant, L., et al. (2017). Embodied emotion impairment in Huntington’s disease. Cortex, 92, 44–56. https://doi.org/10.1016/j.cortex.2017.02.019
  • Turner, K., Bartlett, D., Grainger, S. A., Eddy, C., Reyes, A., Kordsachia, C., Turner, M., Stout, J C., Georgiou-Karistianis, N., Henry, J D., Ziman, M., Cruickshank, T. (2022). Profiling social cognition in premanifest Huntington’s disease. Journal of the International Neuropsychological Society, 28, 217–229. https://doi.org/10.1017/S1355617721000357 3
  • Turrini, S., Bevacqua, N., Cataneo, A., Chiappini, E., Fiori, F., Battaglia, S., Romei, V., & Avenanti, A. (2023a). Neurophysiological markers of premotor–motor network plasticity predict motor performance in young and older adults. Biomedicines, 11(5), 1464. https://doi.org/10.3390/biomedicines11051464
  • Turrini, S., Bevacqua, N., Cataneo, A., Chiappini, E., Fiori, F., Candidi, M., & Avenanti, A. (2023b). Transcranial cortico-cortical paired associative stimulation (ccPAS) over ventral premotor-motor pathways enhances action performance and corticomotor excitability in young adults more than in elderly adults. Frontiers in Aging Neuroscience, 15, 1119508 . https://doi.org/10.3389/fnagi.2023.1119508
  • Turrini, S., Fiori, F., Chiappini, E., Lucero, B., Santarnecchi, E., & Avenanti, A. (2023c). Cortico-cortical paired associative stimulation (ccPAS) over premotor-motor areas affects local circuitries in the human motor cortex via Hebbian plasticity. Neuroimage, 271, 120027. https://doi.org/10.1016/j.neuroimage.2023.120027
  • Turrini, S., Fiori, F., Chiappini, E., Santarnecchi, E., Romei, V., & Avenanti, A. (2022). Gradual enhancement of corticomotor excitability during cortico-cortical paired associative stimulation. Scientific Reports, 12, 14670. https://doi.org/10.1038/s41598-022-18774-9
  • Unti, E., Mazzucchi, S., Frosini, D., Pagni, C., Tognoni, G., Palego, L., Betti, L., Miraglia, F., Giannaccini, G., & Ceravolo, R. (2018). Social cognition and oxytocin in Huntington’s disease: New insights. Brain Sciences, 8(9), 161. https://doi.org/10.3390/brainsci8090161
  • Urgesi, C., Candidi, M., & Avenanti, A. (2014). Neuroanatomical substrates of action perception and understanding: An anatomic likelihood estimation meta-analysis of lesion-symptom mapping studies in brain injured patients. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00344
  • Valchev, N., Tidoni, E., Hamilton, A. F. D. C., Gazzola, V., & Avenanti, A. (2017). Primary somatosensory cortex necessary for the perception of weight from other people’s action: A continuous theta-burst TMS experiment. NeuroImage, 152, 195–206. https://doi.org/10.1016/j.neuroimage.2017.02.075
  • Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30, 829–858. https://doi.org/10.1002/hbm.20547
  • Van Overwalle, F., Baetens, K., Mariën, P., & Vandekerckhove, M. (2014). Social cognition and the cerebellum: A meta-analysis of over 350 fMRI studies. NeuroImage, 86, 554–572. https://doi.org/10.1016/j.neuroimage.2013.09.033
  • Van Overwalle, F., Manto, M., Cattaneo, Z., Clausi, S., Ferrari, C., Gabrieli, J. D. E., Guell, X., Heleven, E., Lupo, M., Ma, Q., Michelutti, M., Olivito, G., Pu, M., Rice, L. C., Schmahmann, J. D., Siciliano, L., Sokolov, A. A., Stoodley, C. J. … Vandervert, L. (2020). Consensus Paper: Cerebellum and social cognition. The Cerebellum, 19(6), 833–868. https://doi.org/10.1007/s12311-020-01155-1
  • Vicario, C. M., Gulisano, M., Martino, D., & Rizzo, R. (2016). Timing recalibration in childhood Tourette syndrome associated with persistent pimozide treatment. Journal of Neuropsychology, 10, 211–222. https://doi.org/10.1111/jnp.12064
  • Vicario, C. M., Gulisano, M., Maugeri, N., Albin, R. L., & Rizzo, R. (2021). Moral decision‐making in adolescents with Tourette syndrome. Movement Disorders, 36(9), 2205–2206. https://doi.org/10.1002/mds.28705
  • Vicario, C. M., Gulisano, M., Maugeri, N., & Rizzo, R. (2020a). Delay reward Discounting in adolescents with Tourette’s syndrome. Movement Disorders, 35, 1279–1280. https://doi.org/10.1002/mds.28096 7
  • Vicario, C. M., Nitsche, M. A., Hoysted, I., Yavari, F., Avenanti, A., Salehinejad, M. A., & Felmingham, K. L. (2020b). Anodal transcranial direct current stimulation over the ventromedial prefrontal cortex enhances fear extinction in healthy humans: A single blind sham-controlled study. Brain Stimulation, 13(2), 489–491. https://doi.org/10.1016/j.brs.2019.12.022
  • Vicario, C. M., Nitsche, M. A., Salehinejad, M. A., Avanzino, L., & Martino, G. (2020c). Time processing, Interoception, and insula activation: A Mini-review on clinical disorders. Frontiers in Psychology, 11, 1893. https://doi.org/10.3389/fpsyg.2020.01893
  • Vicario, C. M., Rafal, R. D., Martino, D., & Avenanti, A. (2017). Core, social and moral disgust are bounded: A review on behavioral and neural bases of repugnance in clinical disorders. Neuroscience & Biobehavioral Reviews, 80, 185–200. https://doi.org/10.1016/j.neubiorev.2017.05.008
  • Vicario, C. M., Salehinejad, M. A., Mosayebi-Samani, M., Maezawa, H., Avenanti, A., & Nitsche, M. A. (2020d). Transcranial direct current stimulation over the tongue motor cortex reduces appetite in healthy humans. Brain Stimulation, 13(4), 1121–1123. https://doi.org/10.1016/j.brs.2020.05.008
  • Vogel, A., Jørgensen, K., & Larsen, I. U. (2022). Normative data for emotion hexagon test and frequency of impairment in behavioral variant frontotemporal dementia, Alzheimer’s disease and Huntington’s disease. Applied Neuropsychology: Adult, 29(1), 127–132. https://doi.org/10.1080/23279095.2020.1720686
  • Vonsattel, J. P., & DiFiglia, M. (1998). Huntington disease. Journal of Neuropathology and Experimental Neurology, 57(5), 369–384. https://doi.org/10.1097/00005072-199805000-00001
  • Waldvogel, H. J., Kim, E. H., Tippett, L. J., & Vonsattel, J. P. (2015). Faull RL.The Neuropathology of Huntington's Disease Curr Top Behav Neurosci. 22, 33–80. https://doi.org/10.1007/7854_2014_354
  • Walker, F. O. (2007). Huntington’s disease. The Lancet, 369, 218–228. https://doi.org/10.1016/S0140-6736(07)60111-1 9557
  • Weightman, M. J., Air, T. M., & Baune, B. T. (2014). A review of the role of social cognition in major depressive disorder. Frontiers in Psychiatry, 5, 179. https://doi.org/10.3389/fpsyt.2014.00179
  • Wood, A., Rychlowska, M., Korb, S., & Niedenthal, P. (2016). Fashioning the face: Sensorimotor simulation contributes to facial expression recognition. Trends in Cognitive Sciences, 20(3), 227–240. https://doi.org/10.1016/j.tics.2015.12.010
  • World Health Organization. (2019). International Statistical classification of diseases and related Health problems (11th ed.).
  • Yitzhak, N., Gurevich, T., Inbar, N., Lecker, M., Atias, D., & Avramovich, H., et al. (2020). Recognition of emotion from subtle and non-stereotypical dynamic facial expressions in Huntington’s disease. Cortex, 126, 343–354. https://doi.org/10.1016/j.cortex.2020.01.019
  • Ystad, M., Hodneland, E., Adolfsdottir, S., Haász, J., Lundervold, A. J., Eichele, T., & Lundervold, A. (2011). Cortico-striatal connectivity and cognition in normal aging: A combined DTI and resting state fMRI study. NeuroImage, 55(1), 24–31. https://doi.org/10.1016/j.neuroimage.2010.11.016
  • Yu, R., Chien, Y.-L., Wang, H.-L. S., Liu, C.-M., Liu, C.-C., Hwang, T.-J., Hsieh, M. H., Hwu, H.-G., & Tseng, W. Y. I. (2014). Frequency-specific alternations in the amplitude of low-frequency fluctuations in schizophrenia: Low-frequency fluctuations in schizophrenia. Human Brain Mapping, 35(2), 627–637. https://doi.org/10.1002/hbm.22203
  • Zaki, J., & Ochsner, K. N. (2012). The neuroscience of empathy: Progress, pitfalls and promise. Nature Neuroscience, 15, 675–680. https://doi.org/10.1038/nn.3085
  • Zaki, J., Weber, J., Bolger, N., & Ochsner, K. (2009). The neural bases of empathic accuracy. Proceedings of the National Academy of Sciences 106, 11382–11387. https://doi.org/10.1073/pnas.0902666106.
  • Zanon, M., Borgomaneri, S., & Avenanti, A. (2018). Action-related dynamic changes in inferior frontal cortex effective connectivity: A TMS/EEG coregistration study. Cortex, 108, 193–209. https://doi.org/10.1016/j.cortex.2018.08.004
  • Zarotti, N., Fletcher, I., & Simpson, J. (2019). New perspectives on emotional processing in people with symptomatic Huntington’s disease: Impaired emotion regulation and recognition of emotional body language. Archives of Clinical Neuropsychology, 34(5), 610–624. https://doi.org/10.1093/arclin/acy085
  • Zarotti, N., Simpson, J., Fletcher, I., Squitieri, F., & Migliore, S. (2018). Exploring emotion regulation and emotion recognition in people with presymptomatic Huntington’s disease: The role of emotional awareness. Neuropsychologia, 112, 1–9. https://doi.org/10.1016/j.neuropsychologia.2018.02.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.