5
Views
0
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Environmental, biochemical and molecular factors regulating manganese-induced neurological injury

Pages 110-122 | Published online: 11 Jul 2009

References

  • Mena I, Horiuchi K, Burke K, Cotzias GC. Chronic manganese poisoning. Individual susceptibility and absorption of iron. Neurology 1969; 19: 1000–6
  • Huang CC, Lu CS, Chu NS, Hochberg F, Lilienfeld D, Olanow W, et al. Progression after chronic manganese exposure. Neurology 1993; 43: 1479–83
  • Olanow CW, Good PF, Shinotoh H, Hewitt KA, Vingerhoets F, Snow BJ, et al. Manganese intoxication in the rhesus monkey: a clinical, imaging, pathologic and biochemical study. Neurology 1996; 46: 492–8
  • Mergler D, Baldwin M. Early manifestations of manganese neurotoxicity in humans: an update. Environ Res 1997; 3: 92–100
  • Pal KP, Samii A, Calne DB. Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 1999; 20: 227–8
  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, et al. Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson's disease. Neurotoxicology 1999; 20: 239–48
  • Hudnell HK. Effects from environmental Mn exposures: a review of the evidence from non-occupational exposure studies. Neurotoxicology 1999; 20: 379–97
  • Kim Y, Kim JM, Kim JW, Yoo CI, Lee CR, Lee JH, et al. Dopamine transporter density is decreased in Parkinsonian patients with a history of manganese exposure: what does it mean?. Mov Disord 2002; 17: 568–75
  • Racette BA, Mcgee-Minnich L, Moerlein SM, Mink JW, Videen TO, Perlmutter JS. Welding-related parkinsonism: clinical features, treatment, and pathophysiology. Neurology 2001; 56: 8–13
  • Bowler RM, Koller W, Schulz PE. Parkinsonism due to manganism in a welder: neurological and neuropsychological sequelae. Neurotoxicology 2006; 27: 327–32
  • Couper J. On the effects of black oxide of manganese which inhaled into the lungs. Brit Ann Med, Pharmacy, Vital Stat General Sci 1837;41–42.
  • Von Jaksch R. Ueber gehaufte diffuse Erkrankungen des Gehirns und Ruckenmarks, an den Typus der multipen Sklerose mahnend, welche durch eine besondere Aetiologie gekennzeichnet sind. Klin Rdsch 1909; 15: 729–33
  • Edsall DL, Wilbur FP, Drinker CK. The occurrence, course and prevention of chronic manganese poisoning. J Ind Hyg 1919; 1: 183–93
  • Baader EW. Manganese poisoning in dry cell battery factories. Arch Gewerbepathol Gewerbehyg 1932; 4: 101–16
  • Canavan MM, Cobb S, Drinker CK. Chronic manganese poisoning: report of a case, with autopsy. Arch Neurol Psychiatry 1934; 32: 501–12
  • Stadler H. Histopathology of the brain resulting from manganese poisoning. Z Ges Neurol Psychiatr 1936; 154: 62–76
  • Voss H. Progressive bulbar paralysis and amyotrophic lateral sclerosis from chronic manganese poisoning. Arch Gewerbepathol Gewerbehyg 1939; 9: 464–76
  • Flinn RH, Neal PA, Reinhart WH, Dallavalle JM, Fulton WB, Dooley AE. Chronic manganese poisoning in an ore-crushing mill. Public Health Bulletin No. 247. US Government Printing Office, Washington, D.C 1940; 1–77
  • Kawamura R, Ikuta H, Fukuzumi S, Yamada R, Tsubaki S. Intoxication by manganese in well water. Kitasato Arch Exp Med 1941; 18: 145–69
  • Inoue N, Makifa Y. Neurological aspects in human exposures to manganese. Neurotoxicology of metals, LW Chang. CRC Press, Boca Raton, FL 1996
  • Kemmerer AR, Elvehjem CA, Hart EB. Studies on the relation of manganese to the nutrition of the mouse. J Biol Chem 1931; 92: 623–30
  • Orent ER, McCollum EV. Effects of deprivation of manganese in the rat. J Biol Chem 1931; 92: 661–78
  • Hurley LS. Teratogenic aspects of manganese, zinc, and copper nutrition. Physiol Rev 1981; 61: 249–95
  • World Health Organization. Environmental Health Criteria 17: Manganese. GenevaSwitzerland: WHO; 1981.
  • Keen CL, Zidenberg-Cherr S. Manganese. Present knowledge in nutrition7th ed, EE Zigler, LJ Filer. ILSI Press, Washington, D.C 1996; 334–43
  • Grieger JL. Nutrition versus toxicology of manganese in humans: evaluation of potential markers. Neurotoxicology 1999; 20: 205–12
  • Chan AWK, Minski MJ, Lim L, Lai JCK. Changes in brain regional manganese and magnesium levels during postnatal development: modulation by chronic manganese administration. Metab Brain Dis 1992; 7: 21–33
  • Wenlock RW, Buss DH, Dixon EJ. Trace nutrients. 2. Manganese in British food. Br J Nutr 1979; 41: 253–61
  • Gillies ME, Birkbeck JA. Tea and coffee as sources of some minerals in the New Zealand diet. Am J Clin Nutr 1983; 38: 936–42
  • Davidsson L, Cederblad A, Lonnerdal B, Sandstrom B. Manganese retention in man: a method for estimating manganese absorption in man. Am J Clin Nutr 1989; 49: 170–9
  • Johnson PE, Lykken GI, Korynta ED. Absorption and biological half-life in humans of intrinsic and extrinsic 54Mn tracers from foods of plant origin. J Nutr 1991; 121: 711–7
  • Kalliomaki PL, Kalliomaki K, Rahkonen E, Aittoniemi K. Follow-up study on the lung retention of welding fumes among shipyard welders. Ann Occup Hyg 1983; 27: 449–52
  • Roels H, Meiers G, Delos M, Ortega I, Lauwerys R, Buchet JP, et al. Influence of the route of administration and the chemical form (MnCl2, MnO2) on the absorption and cerebral distribution of manganese in rats. Arch Toxicol 1997; 71: 223–30
  • Gibbons RA, Dixon SN, Hallis K, Russell AM, Sansom BF, Symonds HW. Manganese metabolism in cows and goats. Biochim Biophys Acta 1976; 444: 1–10
  • Finley JW, Penland JG, Pettit RE, Davis CD. Dietary manganese intake and type of lipid do not affect clinical or neuropsychological measures in healthy young women. J Nutr 2003; 133: 2849–56
  • Britton AA, Cotzias GC. Dependence of manganese turnover on intake. Am J Physiol 1966; 211: 203–6
  • Mahoney JP, Small WJ. Studies on manganese. 3. The biological half-life of radiomanganese in man and factors which affect this half-life. J Clin Invest 1968; 47: 643–53
  • Davis CD, Malecki EA, Greger JL. Interactions among dietary manganese, heme iron, and nonheme iron in women. Am J Clin Nutr 1992; 56: 926–32
  • Dorman DC, Struve MF, James RA, Marshall MW, Parkinson CU, Wong BA. Influence of particle solubility on the delivery of inhaled manganese to the rat brain: manganese sulfate and manganese tetroxide pharmacokinetics following repeated (14-day) exposure. Toxicol Appl Pharmacol 2001; 170: 79–87
  • Finley JW, Davis CD. Manganese deficiency and toxicity: are high or low dietary amounts of manganese cause for concern?. Biofactors 1999; 10: 15–24
  • Abrams E, Lassiter JW, Miller WJ, Neathery MW, Gentry RP, Scarth RD. Absorption as a factor in manganese homeostasis. J Anim Sci 1976; 42: 630–6
  • Arnich N, Cunat L, Lanhers MC, Burnel D. Comparative in situ study of the intestinal absorption of aluminum, manganese, nickel, and lead in rats. Biol Trace Elem Res 2004; 99: 157–71
  • Zlotkin SH, Atkinson S, Lockitch G. Trace elements in nutrition for premature infants. Clin Perinatol 1995; 22: 223–40
  • Dorner K, Dziadzka S, Hohn A, Sievers E, Oldigs HD, Schulz-Lell G, et al. Longitudinal manganese and copper balances in young infants and preterm infants fed on breast-milk and adapted cow's milk formulas. Br J Nutr 1989; 61: 559–72
  • Chandra SV, Shukla GS. Role of iron deficiency in inducing susceptibility to manganese toxicity. Arch Toxicol 1976; 35: 319–23
  • Yokoi K, Kimura M, Itokawa Y. Effect of dietary iron deficiency on mineral levels in tissues of rats. Biol Trace Elem Res 1991; 29: 257–65
  • Chua AC, Morgan EH. Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat. Biol Trace Elem Res 1996; 55: 39–54
  • Rodriguez-Matas MC, Campos MS, Lopez-Aliaga I, Gomez-Ayala AE, Lisbona F. Iron-manganese interactions in the evolution of iron deficiency. Ann Nutr Metab 1998; 42: 96–109
  • Erikson KM, Shihabi ZK, Aschner JL, Aschner M. Manganese accumulates in iron-deficient rat brain regions in a heterogeneous fashion and is associated with neurochemical alterations. Biol Trace Elem Res 2002; 87: 143–56
  • Erikson KM, Syversen T, Steinnes E, Aschner M. Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency. J Nutr Biochem 2004; 15: 335–41
  • Kim Y, Park JK, Choi Y, Yoo CI, Lee CR, Lee H, et al. Blood manganese concentration is elevated in iron deficiency anemia patients, whereas globus pallidus signal intensity is minimally affected. Neurotoxicology 2005; 26: 107–11
  • Heilig E, Molina R, Donaghey T, Brain JD, Wessling-Resnick M. Pharmacokinetics of pulmonary manganese absorption: evidence for increased susceptibility to manganese loading in iron-deficient rats. Am J Physiol Lung Cell Mol Physiol 2005; 288: L887–93
  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997; 388: 482–8
  • Fleming MD, Trenor CC, Su MA, Foernzler D, Beier DR, Dietrich WF, et al. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nature Genet 1997; 16: 383–6
  • Fleming MD, Romano MA, Su MA, Garrick LM, Garrick MD, Andrews NC. Nramp2 is mutated in the anemic Belgrade (b) rat: Evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci U S A 1998; 95: 1148–53
  • Roth JA, Garrick MD. Commentary: iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochem Pharmacol 2003; 66: 1–13
  • Oates PS, Trinder D, Morgan EH. Gastrointestinal function, divalent metal transporter-1 expression and intestinal iron absorption. Pflugers Arch 2000; 440: 496–502
  • Yeh KY, Yeh M, Watkins JA, Rodriguez-Paris J, Glass J. Dietary iron induces rapid changes in rat intestinal divalent metal transporter expression. Am J Physiol Gastrointest Liver Physiol 2000; 279: G1070–9
  • Zoller H, Koch RO, Theurl I, Obrist P, Pietrangelo A, Montosi G, et al. Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology 2001; 120: 1412–9
  • Collins JF, Franck CA, Kowdley KV, Ghishan FK. Identification of differentially expressed genes in response to dietary iron deprivation in rat duodenum. Am J Physiol Gastrointest Liver Physiol 2005; 288: G964–71
  • Erlitzki R, Long JC, Theil EC. Multiple, conserved iron-responsive elements in the 3'-untranslated region of transferrin receptor mRNA enhance binding of iron regulatory protein 2. J Biol Chem 2002; 277: 42579–87
  • Tjalve H, Henriksson J. Uptake of metals in the brain via olfactory pathways. Neurotoxicology 1999; 20: 181–95
  • Dorman DC, Brenneman KA, Mcelveen AM, Lynch SE, Roberts KC, Wong BA. Olfactory transport: a direct route of delivery of inhaled manganese phosphate to the rat brain. J Toxicol Environ Health A 2002; 65: 1493–511
  • Fechter LD, Johnson DL, Lynch RA. The relationship of particle size to olfactory nerve uptake of a non-soluble form of manganese into brain. Neurotoxicology 2002; 23: 177–83
  • Lewis J, Bench G, Myers O, Tinner B, Staines W, Barr E, et al. Trigeminal uptake and clearance of inhaled manganese chloride in rats and mice. Neurotoxicology 2005; 26: 113–23
  • Thompson K, Molina RM, Donaghey T, Schwob JE, Brain JD, Wessling-Resnick M. Olfactory uptake of manganese requires DMT1 and is enhanced by anemia. FASEB J 2006;Nov 20 [Epub ahead of print].
  • Dorman DC, Struve MF, James RA, Marshall MW, Parkinson CU, Wong BA. Influence of particle solubility on the delivery of inhaled manganese to the rat brain: manganese sulfate and manganese tetroxide pharmacokinetics following repeated (14-day) exposure. Toxicol Appl Pharmacol 2001; 170: 79–87
  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 2006; 114: 1172–8
  • Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004; 16: 437–45
  • Dorman DC, Struve MF, Wong BA, Dye JA, Robertson ID. Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation. Toxicol Sci 2006; 92: 219–27
  • Lundborg M, Falk R, Johansson A, Kreyling W, Camner P. Phagolysosomal pH and dissolution of cobalt oxide particles by alveolar macrophages. Environ Health Perspect 1992; 97: 153–7
  • Lundborg M, Johard U, Johansson A, Eklund A, Falk R, Kreyling W, et al. Phagolysosomal morphology and dissolution of cobalt oxide particles by human and rabbit alveolar macrophages. Exp Lung Res 1995; 21: 51–66
  • Kreyling WG. Intracellular particle dissolution in alveolar macrophages. Environ Health Perspect 1992; 97: 121–6
  • Heilmann P, Beisker W, Miaskowski U, Camner P, Kreyling WG. Intraphagolysosomal pH in canine and rat alveolar macrophages: flow cytometric measurements. Environ Health Perspect 1992; 97: 115–20
  • Antonini JM, Lawryk NJ, Murthy GG, Brain JD. Effect of welding fume solubility on lung macrophage viability and function in vitro. J Toxicol Environ Health A 1999; 58: 343–63
  • Antonini JM, Taylor MD, Zimmer AT, Roberts JR. Pulmonary responses to welding fumes: role of metal constituents. J Toxicol Environ Health A 2004; 67: 233–49
  • Fritsch P, Masse R. Overview of pulmonary alveolar macrophage renewal in normal rats and during different pathological processes. Environ Health Perspect 1992; 97: 59–67
  • Widera A, Beloussow K, Kim KJ, Crandall ED, Shen WC. Phenotype-dependent synthesis of transferrin receptor in rat alveolar epithelial cell monolayers. Cell Tissue Res 2003; 312: 313–8
  • Widera A, Kim KJ, Crandall ED, Shen WC. Transcytosis of GCSF-transferrin across rat alveolar epithelial cell monolayers. Pharm Res 2003; 20: 1231–8
  • Pascal LE, Tessier DM. Cytotoxicity of chromium and manganese to lung epithelial cells in vitro. Toxicol Lett 2004; 147: 143–51
  • Pomier-Layrargues G, Spahr L, Butterworth RF. Increased manganese concentrations in pallidum of cirrhotic patients. Lancet 1995; 345: 735
  • Krieger D, Krieger S, Jansen O, Gass P, Theilmann L, Lichtnecker H. Manganese and chronic hepatic encephalopathy. Lancet 1995; 346: 270–4
  • Zayed J. Use of MMT in Canadian gasoline: health and environment issues. Am J Ind Med 2001; 39: 434–5
  • Cambell M. Outdoor air quality in Toronto: issues and concerns. City of Toronto, Department of Public Health, EPA, TorontoCanada 1993
  • Molders N, Schilling PJ, Wong J, Roos JW, Smith IL. X-ray fluorescence mapping and micro-XANES spectroscopic characterization of exhaust particulates emitted from auto engines burning MMT-added gasoline. Environ Sci Technol 2001; 35: 3122–9
  • Hauser RA, Zesiewicz TA, Rosemurgy AS, Martinez C, Olanow CW. Manganese intoxication and chronic liver failure. Ann Neurol 1994; 36: 871–5
  • Hauser RA, Zesiewicz TA, Martinez C, Rosemurgy AS, Olanow CW. Blood manganese correlates with brain magnetic resonance imaging changes in patients with liver disease. Can J Neurol Sci 1996; 23: 95–8
  • Reimund JM, Dietemann JL, Warter JM, Baumann R, Duclos B. Factors associated to hypermanganesemia in patients receiving home parenteral nutrition. Clin Nutr 2000; 19: 343–8
  • Fok TF, Chui KK, Cheung R, Ng PC, Cheung KL, Hjelm M. Manganese intake and cholestatic jaundice in neonates receiving parenteral nutrition: a randomized controlled study. Acta Paediatr 2001; 90: 1009–15
  • Iinuma Y, Kubota M, Uchiyama M, Yagi M, Kanada S, Yamazaki S, et al. Whole-blood manganese levels and brain manganese accumulation in children receiving long-term home parenteral nutrition. Pediatr Surg Int 2003; 19: 268–72
  • Suzuki H, Takanashi J, Saeki N, Kohno Y. Temporal parenteral nutrition in children causing t1 shortening in the anterior pituitary gland and globus pallidus. Neuropediatrics 2003; 34: 200–4
  • Cotzias GC. Manganese in health and disease. Physiol Rev 1958; 38: 503–32
  • Alvord EC, Jr, Forno LS, Kusske JA, Kauffman RJ, Rhodes JS, Goetowski CR. The pathology of Parkinsonism: a comparison of degenerations in cerebral cortex and brainstem. Adv Neurol 1974; 5: 175–93
  • Calne DB. The nature of Parkinson's disease. Neurochem Int 1992; 20: 1S–3S
  • Autissier N, Rochette L, Dumas P, Beley A, Loireau A, Bralet J. Dopamine and norepinephrine turnover in various regions of the rat brain after chronic manganese chloride administration. Toxicology 1982; 24: 175–82
  • Desole MS, Miele M, Esposito G, Migheli R, Fresu L, De Natale G, et al. Dopaminergic system activity and cellular defense mechanisms in the striatum and striatal synaptosomes of the rat subchronically exposed to manganese. Arch Toxicol 1994; 68: 566–70
  • Montes S, Perez-Severiano F, Vergara P, Segovia J, Rios C, Muriel P. Nitric oxide production in striatum and pallidum of cirrhotic rats. Neurochem Res 2006; 31: 11–20
  • Vidal L, Alfonso M, Campos F, Faro LR, Cervantes RC, Duran R. Effects of manganese on extracellular levels of dopamine in rat striatum: an analysis in vivo by brain microdialysis. Neurochem Res 2005; 30: 1147–54
  • Barbeau A. Manganese and extrapyramidal disorders (a critical review and tribute to Dr. George C. Cotzias). Neurotoxicology 1984; 5: 13–35
  • Witholt R, Gwiazda RH, Smith DR. The neurobehavioral effects of subchronic manganese exposure in the presence and absence of pre-parkinsonism. Neurotoxicol Teratol 2000; 22: 851–61
  • Roels HA, Ortega Eslava MI, Ceulemans E, Robert A, Lison D. Prospective study on the reversibility of neurobehavioral effects in workers exposed to manganese dioxide. Neurotoxicology 1999; 20: 255–71
  • Bouchard M, Mergler D, Baldwin M, Panisset M, Bowler R, Roels HA. Neurobehavioral functioning after cessation of manganese exposure: a follow-up after 14 years. Am J Ind Med 2006; Nov 9 [Epub ahead of print].
  • Racette BA, Antenor JA, Mcgee-Minnich L, Moerlein SM, Videen TO, Kotagal V, et al. [18F]FDOPA PET and clinical features in parkinsonism due to manganism. Mov Disord 2005; 20: 492–6
  • Kenangil G, Ertan S, Sayilir I, Ozekmekci S. Progressive motor syndrome in a welder with pallidal T1 hyperintensity on MRI: a two-year follow-up. Mov Disord 2006; 21: 2197–200
  • Gupta SK, Murthy RC, Chandra SV. Neuromelanin in manganese-exposed primates. Toxicol Lett 1980; 6: 17–20
  • Wright AK, Atherton JF, Norrie L, Arbuthnott GW. Death of dopaminergic neurones in the rat substantia nigra can be induced by damage to globus pallidus. Eur J Neurosci 2004; 20: 1737–44
  • Park NH, Park JK, Choi Y, Yoo CI, Lee CR, Lee H, et al. Whole blood manganese correlates with high signal intensities on T1-weighted MRI in patients with liver cirrhosis. Neurotoxicology 2003; 24: 909–15
  • Shinotoh H, Snow BJ, Hewitt KA, Pate BD, Doudet D, Nugent R, et al. MRI and PET studies of manganese-intoxicated monkeys. Neurology 1995; 45: 1199–204
  • Maeda H, Sato M, Yoshikawa A, Kimura M, Sonomura T, Terada M, et al. Imaging in patients with hepatic cirrhosis: relationship between high intensity signal in basal ganglia on T1-weighted images and elemental concentrations in brain. Neuroradiology 1997; 39: 546–50
  • Burkhard PR, Delavelle J, Du Pasquier R, Spahr L. Chronic parkinsonism associated with cirrhosis: a distinct subset of acquired hepatocerebral degeneration. Arch Neurol 2003; 60: 521–8
  • Brouillet EP, Shinobu L, McGarvey U, Hochberg F, Beal MF. Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol 1993; 120: 89–94
  • Hazell AS, Norenberg MD. Manganese decreases glutamate uptake in cultured astrocytes. Neurochem Res 1997; 22: 1443–7
  • Erikson K, Aschner M. Manganese causes differential regulation of glutamate transporter (GLAST) taurine transporter and metallothionein in cultured rat astrocytes. Neurotoxicology 2002; 23: 595–602
  • Kannurpatti SS, Joshi PG, Joshi NB. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel. Neurochem Res 2000; 25: 1527–36
  • Roth JA, Feng L, Dolan KG, Lis A, Garrick MD. Effect of the iron chelator desferrioxamine on manganese-induced toxicity of rat pheochromocytoma (PC12) cells. J Neurosci Res 2002; 68: 76–83
  • Roth JA, Garrick MD. Commentary: iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochem Pharmacol 2003; 66: 1–13
  • Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, et al. Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett 2001; 509: 309–16
  • Gunter TE, Gavin CE, Aschner M, Gunter KK. Speciation of manganese in cells and mitochondria: a search for the proximal cause of manganese neurotoxicity. Neurotoxicology 2006; 27: 765–76
  • Garrick MD, Kuo HC, Vargas F, Singleton S, Zhao L, Smith JJ, et al. Comparison of mammalian cell lines expressing distinct isoforms of divalent metal transporter 1 in a tetracycline-regulated fashion. Biochem J 2006; 398: 539–46
  • Lucaciu CM, Dragu C, Copaescu L, Morariu VV. Manganese transport through human erythrocyte membranes. An EPR study. Biochim Biophys Acta 1997; 1328: 90–8
  • Crossgrove JS, Yokel RA. Manganese distribution across the blood–brain barrier: IV. Evidence for brain influx through store-operated calcium channels. Neurotoxicology 2005; 26: 297–307
  • He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, et al. ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol Pharmacol 2006; 70: 171–80
  • Malecki EA, Cook BM, Devenyi AG, Beard JL, Connor JR. Transferrin is required for normal distribution of 59Fe and 54Mn in mouse brain. J Neurol Sci 1999; 170: 112–8
  • Gunshin H, Fujiwara Y, Custodio AO, Direnzo C, Robine S, Andrews NC. Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest 2005; 115: 1258–66
  • Gruenheid S, Cellier M, Vidal S, Gros P. Identification and characterization of a second mouse Nramp gene. Genomics 1995; 25: 514–25
  • Lee PL, Gelbart T, West C, Halloran C, Beutler E. The human Nramp2 gene: characterization of the gene structure, alternative splicing, promoter region and polymorphisms. Blood Cells Mol Dis 1998; 24: 199–215
  • Su MA, Trenor III CC, Fleming JC, Fleming MD, Andrews NC. The G185R mutation disrupts function of the iron transporter Nramp2. Blood 1998; 92: 2157–63
  • Lis A, Paradkar PN, Singleton S, Kuo HC, Garrick MD, Roth JA. Hypoxia induces changes in expression of isoforms of the divalent metal transporter (DMT1) in rat pheochromocytoma (PC12) cells. Biochem Pharmacol 2005; 69: 1647–55
  • Paradkar PN, Roth JA. Post-translational and transcriptional regulation of DMT1 during P19 embryonic carcinoma cell differentiation by retinoic acid. Biochem J 2006; 394: 173–83
  • Paradkar PN, Roth JA. Nitric oxide transcriptionally down-regulates specific isoforms of divalent metal transporter (DMT1) via NF-κB. J Neurochem 2006; 96: 1768–77
  • Hubert N, Hentze MW. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc Natl Acad Sci U S A 2002;12345–50.
  • Garrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M, et al. DMT1: a mammalian transporter for multiple metals. Biometals 2003; 16: 41–54
  • Haile DJ. Regulation of genes of iron metabolism by the iron-response proteins. Am J Med Sci 1999; 318: 230–40
  • Schumann K, Moret R, Kunzle H, Kuhn LC. Iron regulatory protein as an endogenous sensor of iron in rat intestinal mucosa. Possible implications for the regulation of iron absorption. Eur J Biochem 1999; 260: 362–72
  • Wang X, Garrick MD, Yang F, Dailey LA, Piantadosi CA, Ghio AJ. TNF, IFN-gamma, and endotoxin increase expression of DMT1 in bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2005; 289: L24–33
  • Ponzoni S, Guimaraes FS, Del Bel EA, Garcia-Cairasco N. Behavioral effects of intra-nigral microinjections of manganese chloride: interaction with nitric oxide. Prog Neuropsychopharmacol Biol Psychiatry 2000; 24: 307–25
  • Montes S, Perez-Severiano F, Vergara P, Segovia J, Rios C, Muriel P. Nitric oxide production in striatum and pallidum of cirrhotic rats. Neurochem Res 2006; 31: 11–20
  • Liu X, Sullivan KA, Madl JE, Legare M, Tjalkens RB. Manganese-induced neurotoxicity: the role of astroglial-derived nitric oxide in striatal interneuron degeneration. Toxicol Sci 2006; 91: 521–31
  • Desole MS, Sciola L, Delogu MR, Migheli R, Sircana S, Migheli R. Manganese and 1-methyl-4-(2'-ethylphenyl)-1,2,3,6-tetrahydropyridine induce apoptosis in PC12 cells. Neurosci Lett 1996; 209: 193–6
  • Desole MS, Sciola L, Delogu MR, Sircana S, Migheli R, Miele E. Role of oxidative stress in the manganese and 1-methyl-4-(2'-ethylphenyl)-1,2,3,6-tetrahydropyridine-induced apoptosis in PC12 cells. Neurochem Int 1997; 31: 169–76
  • Hirata Y, Adachi K, Kiuchi K. Activation of JNK pathway and induction of apoptosis by manganese in PC12 cells. J Neurochem 1998; 71: 1607–15
  • Schrantz N, Blanchard DA, Mitenne F, Auffredou MT, Vazquez A, Leca G. Manganese induces apoptosis of human B cells: caspase-dependent cell death blocked by Bcl-2. Cell Death Differ 1999; 6: 445–53
  • Sziraki I, Mohanakumar KP, Rauhala P, Kim HG, Yeh KJ, Chiueh CC. Manganese: a transition metal protects nigrostriatal neurons from oxidative stress in the iron-induced animal model of parkinsonism. Neuroscience 1998; 85: 1101–11
  • Sziraki I, Rauhala P, Chiueh CC. Novel protective effect of manganese against ferrous citrate-induced lipid peroxidation and nigrostriatal neurodegeneration in vivo. Brain Res 1995; 698: 285–7
  • Sziraki I, Rauhala P, Koh KK, van Bergen P, Chiueh CC. Implications for atypical antioxidative properties of manganese in iron-induced brain lipid peroxidation and copper-dependent low density lipoprotein conjugation. Neurotoxicology 1999; 20: 455–66
  • Talavera EJ, Arcaya JL, Giraldoth D, Suarez J, Bonilla E. Decrease in spontaneous motor activity and in brain lipid peroxidation in manganese and melatonin treated mice. Neurochem Res 1999; 24: 705–8
  • Roth JA, Walowitz J, Browne RW. Manganese-induced rat pheochromocytoma (PC12) cell death is independent of caspase activation. J Neurosci Res 2000; 61: 162–71
  • Taylor MD, Erikson KM, Dobson AW, Fitsanakis VA, Dorman DC, Aschner M. Effects of inhaled manganese on biomarkers of oxidative stress in the rat brain. Neurotoxicology 2006; 27: 788–97
  • Latchoumycandane C, Anantharam V, Kitazawa M, Yang Y, Kanthasamy A, Kanthasamy AG. Protein kinase C delta (PKC{delta}) is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells. J Pharmacol Exp Ther 2005; 313: 46–55
  • Anantharam V, Kitazawa M, Wagner J, Kaul S, Kanthasamy AG. Caspase-3-dependent proteolytic cleavage of protein kinase Cdelta is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl. J Neurosci 2002; 22: 1738–51
  • Gavin CE, Gunter K, Gunter TE. Mn2 +  sequestration by mitochondria and inhibition of oxidative phosphorylation. Toxicol Appl Pharmacol 1992; 115: 1–5
  • Gavin CE, Gunter KK, Gunter TE. Manganese and calcium transport in mitochondria: implications for manganese toxicity. Neurotoxicology 1999; 20: 445–54
  • Kitazawa M, Anantharam V, Yang Y, Hirata Y, Kanthasamy A, Kanthasamy AG. Activation of protein kinase C delta by proteolytic cleavage contributes to manganese-induced apoptosis in dopaminergic cells: protective role of Bcl-2. Biochem Pharmacol 2005; 69: 133–46
  • Galvani P, Fumagalli P, Santagostino A. Vulnerability of mitochondrial complex I in PC12 cells exposed to manganese. Eur J Pharmacol Environ Toxicol 1995; 293: 377–83
  • Chen CJ, Liao SL. Oxidative stress involves [sic.] in astrocytic alterations induced by manganese. Exp Neurol 2002; 175: 216–25
  • Zhang S, Zhou Z, Fu J. Effect of manganese chloride exposure on liver and brain mitochondria function in rats. Environ Res 2003; 93: 149–57
  • Zhang S, Fu J, Zhou Z. In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicol In Vitro 2004; 18: 71–7
  • Lander F, Kristiansen J, Lauritsen JM. Manganese exposure in foundry furnacemen and scrap recycling workers. Int Arch Occup Environ Health 1999; 72: 546–50
  • Park NH, Park JK, Choi Y, Yoo CI, Lee CR, Lee H, et al. Whole blood manganese correlates with high signal intensities on T1-weighted MRI in patients with liver cirrhosis. Neurotoxicology 2003; 24: 909–15
  • Kim E, Kim Y, Cheong HK, Cho S, Shin YC, Sakong J, et al. Pallidal index on MRI as a target organ dose of manganese: structural equation model analysis. Neurotoxicology 2005; 26: 351–9
  • Fitsanakis VA, Zhang N, Avison MJ, Gore JC, Aschner JL, Aschner M. The use of magnetic resonance imaging (MRI) in the study of manganese neurotoxicity. Neurotoxicology 2006; 27: 798–806
  • Dorman DC, Struve MF, Wong BA, Dye JA, Robertson ID. Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation. Toxicol Sci 2006; 92: 219–27
  • Sung JH, Kim CY, Yang SO, Khang HS, Cheong HK, Lee JS, et al. Changes in blood manganese concentration and MRI t1 relaxation time during 180 days of stainless steel welding-fume exposure in cynomolgus monkeys. Inhal Toxicol 2007; 19: 47–55
  • Jiang Y, Zheng W, Long L, Zhao W, Li X, Mo X, et al Brain magnetic resonance imaging and manganese concentrations in red blood cells of smelting workers: search for biomarkers of manganese exposure. Neurotoxicology 2006; Aug 26 [Epub ahead of print].
  • Kim Y. High signal intensities on T1-weighted MRI as a biomarker of exposure to manganese. Ind Health 2004; 42: 111–5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.