427
Views
10
CrossRef citations to date
0
Altmetric
Review

The relationship between idiopathic cytopenias/dysplasias of uncertain significance (ICUS/IDUS) and autoimmunity

Pages 649-657 | Received 17 Oct 2016, Accepted 05 Jun 2017, Published online: 15 Jun 2017

References

  • Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia. Blood. 2016;127. DOI:10.1182/blood-2016-03-643544.
  • Wimazal F, Fonatsch C, Thalhammer R, et al. Idiopathic cytopenia of undetermined significance (ICUS) versus low risk MDS: the diagnostic interface. Leuk Res. 2007;31(11):1461–1468.
  • Valent P, Horny HP. Minimal diagnostic criteria for myelodysplastic syndromes and separation from ICUS and IDUS: update and open questions. Eur J Clin Invest. 2009;39(7):548–553.
  • Valent P, Bain BJ, Bennett JM, et al. Idiopathic cytopenia of undetermined significance (ICUS) and idiopathic dysplasia of uncertain significance (IDUS), and their distinction from low risk MDS. Leuk Res. 2012;36:1–5.
  • Schroeder T, Ruf L, Bernhardt A, et al. Distinguishing myelodysplastic syndromes (MDS) from idiopathic cytopenia of undetermined significance (ICUS): HUMARA unravels clonality in a subgroup of patients. Ann Oncol. 2010;21:2267–2271.
  • Kwok B, Hall JM, Witte JS, et al. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood. 2015;126:2355–2361.
  • Heuser M, Thol F, Ganser A. Clonal hematopoiesis of indeterminate potential. Dtsch Arztebl Int. 2016;113:317–322.
  • Malcovati L, Cazzola M. The shadowlands of MDS: idiopathic cytopenias of undetermined significance (ICUS) and clonal hematopoiesis of indeterminate potential (CHIP). Hematol Am Soc Hematol Educ Program. 2015;2015:299–307.
  • Glenthøj A, Ørskov AD, Hansen JW, et al. Immune mechanisms in myelodysplastic syndrome. Int J Mol Sci. 2016;17(6). DOI:10.3390/ijms17060944.
  • Anderson L, Pfeiffer RM, Landgren O, et al. Risks of myeloid malignancies in patients with autoimmune conditions. Br J Cancer. 2009;100:822–828.
  • Mekinian A, Grignano E, Braun T, et al. Systemic inflammatory and autoimmune manifestations associated with myelodysplastic syndromes and chronic myelomonocytic leukaemia: a French multicentre retrospective study. Rheumatology (Oxford). 2016;55:291–300.
  • Komrokji RS, Kulasekararaj A, Al Ali NH, et al. Autoimmune diseases and myelodysplastic syndromes. Am J Hematol. 2016;91(5):E280–3. DOI:10.1002/ajh.24333
  • Wilson AB, Neogi T, Prout M, et al. Relative risk of myelodysplastic syndromes in patients with autoimmune disorders in the general practice research database. Cancer Epidemiol. 2014;38:544–549.
  • Giannouli S, Kanellopoulou T, Voulgarelis M. Myelodysplasia and autoimmunity. Curr Opin Rheumatol. 2012;24:97–102.
  • Barcellini W, Zaninoni A, Imperiali FG, et al. Anti-erythroblast autoimmunity in early myelodysplastic syndromes. Haematologica. 2007;92:19–26.
  • Zaninoni A, Imperiali FG, Cattaneo A, et al. Detection of erythroblast antibodies in mitogen-stimulated bone marrow cultures from patients with myelodysplastic syndromes. Transfusion. 2016;56:2037–2041.
  • Schneider RK, Schenone M, Ferreira MV, et al. Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nat Med. 2016;22:288–297.
  • Kook H, Zeng W, Guibin C, et al. Increased cytotoxic T cells with effector phenotype in aplastic anemia an myelodysplasia. Exp Hematol. 2001;29:1270–1277.
  • Epperson DE, Nakamura R, Saunthararajah Y, et al. Oligoclonal T cell expansion in myelodysplastic syndrome: evidence for an autoimmune process. Leuk Res. 2001;25:1075–1083.
  • Matsutani T, Yoshioka T, Tsuruta Y, et al. Determination of T-cell receptors of clonal CD8-positive T-cells in myelodysplastic syndrome with erythroid hypoplasia. Leuk Res. 2003;27:305–312.
  • Kordasti SY, Afzali B, Lim Z, et al. IL-17 producing CD4+ T cells, proinflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome. Br J Haematol. 2009;145:64–72.
  • Boula A, Voulgarelis M, Giannouli S, et al. Effect of cA2 antitumor necrosis factor-alpha antibody therapy on hematopoiesis of patients with myelodysplastic syndromes. Clin Cancer Res. 2006;12:3099–3108.
  • Lazarini M, Traina F, Winnischofer SM, et al. Effects of thalidomide on longterm bone marrow cultures from patients with myelodysplastic syndromes: induction of IL-10 expression in the stromal layers. Leuk Res. 2011;35:1102–1107.
  • Zhou L, Nguyen AN, Sohal D, et al. Inhibition of the TGF-beta receptor I kinase promotes hematopoiesis in MDS. Blood. 2008;112:3434–3443.
  • Kordasti SY, Ingram W, Hayden J, et al. CD4+/CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood. 2007;110:847–850.
  • Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. Philadelphia, PA: Saunders Ed; 2012.
  • Barcellini W, Clerici G, Montesano R, et al. In vitro quantification of anti-red blood cell antibody production in idiopathic autoimmune haemolytic anaemia: effect of mitogen and cytokine stimulation. Br J Haematol. 2000;111:452–460.
  • Toriani-Terenzi C, Fagiolo E. IL-10 and the cytokine network in the pathogenesis of human autoimmune hemolytic anemia. Ann N Y Acad Sci. 2005;1051:29–44.
  • Ahmad E, Elgohary T, Ibrahim H. Naturally occurring regulatory T cells and interleukins 10 and 12 in the pathogenesis of idiopathic warm autoimmune hemolytic anemia. J Investig Allergol Clin Immunol. 2011;21:297–304.
  • Xu L, Zhang T, Liu Z, et al. Critical role of Th17 cells in development of autoimmune hemolytic anemia. Exp Hematol. 2012;40:994–1004.
  • Stasi R, Evangelista ML, Stipa E, et al. Idiopathic thrombocytopenic purpura: current concepts in pathophysiology and management. Thromb Haemost. 2008;99:4–13.
  • Olsson B, Andersson PO, Jernås M, et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med. 2003;9:1123–1124.
  • Ogawara H, Handa H, Morita K, et al. High Th1/Th2 ratio in patients with chronic idiopathic thrombocytopenic purpura. Eur J Haematol. 2003;71:283–288.
  • Yu J, Heck S, Patel V, et al. Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura. Blood. 2008;112:1325–1328.
  • Rocha AM, Souza C, Rocha GA, et al. The levels of IL-17A and of the cytokines involved in Th17 cell commitment are increased in patients with chronic immune thrombocytopenia. Haematologica. 2011;96:1560–1564.
  • Li Q, Zhang L, Xia R, et al. Plasma levels of interleukin 12 family cytokines and their relevant cytokines in adult patients with chronic immune thrombocytopenia before and after high-dose dexamethasone treatment. Med Princ Pract. 2015;24:458–464.
  • Takahashi R, Sekine N, Nakatake T. Influence of monoclonal antiplatelet glycoprotein antibodies on in vitro human megakaryocyte colony formation and proplatelet formation. Blood. 1999;93:1951–1958.
  • Zermati Y, Fichelson S, Valensi F, et al. Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors. Exp Hematol. 2000;28:885–894.
  • Akel S, Petrow-Sadowski C, Laughlin MJ, et al. Neutralization of autocrine transforming growth factor-beta in human cord blood CD34(+)CD38(-)Lin(-) cells promotes stem-cell-factor-mediated erythropoietin-independent early erythroid progenitor development and reduces terminal differentiation. Stem Cells. 2003;21:557–567.
  • Xie Y, Bai H, Liu Y, et al. Cooperative effect of erythropoietin and TGF-β inhibition on erythroid development in human pluripotent stem cells. J Cell Biochem. 2015;116:2735–2743.
  • Papadaki HA, Stamatopoulos K, Damianaki A, et al. Activated T-lymphocytes with myelosuppressive properties in patients with chronic idiopathic neutropenia. Br J Haematol. 2005;128:863–876.
  • Stavroulaki E, Kastrinaki MC, Pontikoglou C, et al. Mesenchymal stem cells contribute to the abnormal bone marrow microenvironment in patients with chronic idiopathic neutropenia by overproduction of transforming growth factor-β1. Stem Cells Dev. 2011;20:1309–1318.
  • Papadaki HA, Palmblad J, Eliopoulos GD. Non-immune chronic idiopathic neutropenia of adult: an overview. Eur J Haematol. 2001;67:35–44.
  • Spanoudakis M, Koutala H, Ximeri M, et al. T-cell receptor Vβ repertoire analysis in patients with chronic idiopathic neutropenia demonstrates the presence of aberrant T-cell expansions. Clin Immunol. 2010;137:384–395.
  • Pavlaki KI, Kastrinaki MC, Klontzas M, et al. Abnormal telomere shortening of peripheral blood mononuclear cells and granulocytes in patients with chronic idiopathic neutropenia. Haematologica. 2012;97:743–750.
  • Velegraki M, Koutala H, Tsatsanis C, et al. Increased levels of the high mobility group box 1 protein sustain the inflammatory bone marrow microenvironment in patients with chronic idiopathic neutropenia via activation of toll-like receptor 4. J Clin Immunol. 2012;32:312–322.
  • Giannouli S, Tzoanopoulos D, Ritis K, et al. Autoimmune manifestations in human myelodysplasia: a positive correlation with interferon regulatory factor- 1 (IRF-1) expression. Ann Rheum Dis. 2004;63:578–582.
  • Yoshizato T, Dumitriu B, Hosokawa K, et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015;373:35–47.
  • Kulasekararaj AG, Jiang J, Smith AE, et al. Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome. Blood. 2014;124:2698–2704.
  • Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–2498.
  • Saito C, Ishiyama K, Yamazaki H, et al. Hypomegakaryocytic thrombocytopenia (HMT): an immune-mediated bone marrow failure characterized by an increased number of PNH-phenotype cells and high plasma thrombopoietin levels. Br J Haematol. 2016;175:246–251.
  • Damianaki A, Stagakis E, Mavroudi I, et al. Minor populations of paroxysmal nocturnal haemoglobinuria type cells in patients with chronic idiopathic neutropenia. Eur J Haematol. 2016 Apr 28. DOI:10.1111/ejh.12766.
  • Saunthararajah Y, Nakamura R, Nam JM, et al. HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood. 2002;100:1570–1574.
  • Lim ZY, Killick S, Germing U, et al. Low IPSS score and bone marrow hypocellularity in MDS patients predict hematological responses to antithymocyte globulin. Leukemia. 2007;21:1436–1441.
  • Sloand EM, Mainwaring L, Fuhrer M, et al. Preferential suppression of trisomy 8 compared with normal hematopoietic cell growth by autologous lymphocytes in patients with trisomy 8 myelodysplastic syndrome. Blood. 2005;106:841–851.
  • Sloand EM, Wu CO, Greenberg P, et al. Factors affecting response and survival in patients with myelodysplasia treated with immunosuppressive therapy. J Clin Oncol. 2008;26:2505–2511.
  • Komrokji RS, Mailloux AW, Chen DT, et al. A phase II multicenter rabbit anti-thymocyte globulin trial in patients with myelodysplastic syndromes identifying a novel model for response prediction. Haematologica. 2014;99:1176–1183.
  • Jonásova A, Neuwirtová R, Cermák J, et al. Cyclosporin A therapy in hypoplastic MDS patients and certain refractory anaemias without hypoplastic bone marrow. Br J Haematol. 1998;100:304–309.
  • Shimamoto T, Tohyama K, Okamoto T, et al. Cyclosporin A therapy for patients with myelodysplastic syndrome: multicenter pilot studies in Japan. Leuk Res. 2003;27:783–788.
  • Parikh AR, Olnes MJ, Barrett AJ. Immunomodulatory treatment of myelodysplastic syndromes: antithymocyte globulin, cyclosporine, and alemtuzumab. Semin Hematol. 2012;49:304–311.
  • Broliden PA, Dahl IM, Hast R, et al. Antithymocyte globulin and cyclosporine A as combination therapy for low-risk non-sideroblastic myelodysplastic syndromes. Haematologica. 2006;91:667–670.
  • Remacha AF, Arrizabalaga B, Bueno J, et al. Treatment with mycophenolate mofetil followed by recombinant human erythropoietin in patients with low-risk myelodysplastic syndromes resistant to erythropoietin treatment. Haematologica. 2010;95:339–340.
  • Sloand EM, Olnes MJ, Shenoy A, et al. Alemtuzumab treatment of intermediate-1 myelodysplasia patients is associated with sustained improvement in blood counts and cytogenetic remissions. J Clin Oncol. 2010;28:5166–5173.
  • Barcellini W. Current treatment strategies in autoimmune hemolytic disorders. Expert Rev Hematol. 2015;8:681–691.
  • Provan D, Stasi R, Newland AC, et al. International consensus report on the investigation and management of primary immune thrombocytopenia. Blood. 2010;115:168–186.
  • Fattizzo B, Zaninoni A, Consonni D, et al. Is chronic neutropenia always a benign disease? Evidences from a 5-year prospective study. Eur J Intern Med. 2015;26:611–615.
  • Hohensinner PJ, Goronzy JJ, Weyand CM. Telomere dysfunction. Autoimmun Aging Aging Dis. 2011;2:524–537.
  • Townsley DM, Dumitriu B, Liu D, et al. Danazol treatment for telomere diseases. N Engl J Med. 2016;374:1922–1931.
  • Hwang SM, Kim SY, Kim JA, et al. Short telomere length and its correlation with gene mutations in myelodysplastic syndrome. J Hematol Oncol. 2016;9:62.
  • Duffy L, O’Reilly SC. Toll-like receptors in the pathogenesis of autoimmune diseases: recent and emerging translational developments. Immunotargets Ther. 2016;5:69–80. DOI:10.2147/ITT.S89795.
  • Varney ME, Melgar K, Niederkorn M, et al. Deconstructing innate immune signaling in myelodysplastic syndromes. Exp Hematol. 2015;43:587–598.
  • Wei Y, Dimicoli S, Bueso-Ramos C, et al. Toll-like receptor alterations in myelodysplastic syndrome. Leukemia. 2013;27:1832–1840.
  • Zaninoni A, Imperiali FG, Pomati M, et al. Bone marrow mitogen-stimulated direct antiglobulin test in a case of erythroblastic synartesis. Clin Lab. 2010;56:459–462.
  • Barcellini W, Fattizzo B, Zaninoni A, et al. Clinical evolution of autoimmune cytopenias to idiopathic cytopenias/dysplasias of uncertain significance (ICUS/IDUS) and bone marrow failure syndromes. Am J Hematol. 2017;92(3):E26–E29. DOI:10.1002/ajh.24618.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.