260
Views
15
CrossRef citations to date
0
Altmetric
Review

Diagnosis and treatment of cardiac iron overload in transfusion-dependent thalassemia patients

, &
Pages 471-479 | Received 16 Mar 2018, Accepted 10 May 2018, Published online: 18 May 2018

References

  • Rund D, Rachmilewitz E. Beta-thalassemia. N Engl J Med. 2005;353:1135–1146.
  • Piel FB, Weatherall DJ. The alpha-thalassemias. N Engl J Med. 2014;371:1908–1916.
  • Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86:480–487.
  • Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115:4331–4336.
  • Clegg JB, Weatherall DJ. Thalassemia and malaria: new insights into an old problem. Proc Assoc Am Physicians. 1999;111:278–282.
  • Pattanapanyasat K, Yongvanitchit K, Tongtawe P, et al. Impairment of plasmodium falciparum growth in thalassemic red blood cells: further evidence by using biotin labeling and flow cytometry. Blood. 1999;93:3116–3119.
  • Fleming RE, Ponka P. Iron overload in human disease. N Engl J Med. 2012;366:348–359.
  • Pippard MJ, Callender ST, Warner GT, et al. Iron absorption and loading in beta-thalassaemia intermedia. Lancet. 1979;2:819–821.
  • Brittenham GM. Iron-chelating therapy for transfusional iron overload. N Engl J Med. 2011;364:146–156.
  • Wijarnpreecha K, Kumfu S, Chattipakorn SC, et al. Cardiomyopathy associated with iron overload: how does iron enter myocytes and what are the implications for pharmacological therapy? Hemoglobin. 2015;39:9–17.
  • Lekawanvijit S, Chattipakorn N. Iron overload thalassemic cardiomyopathy: iron status assessment and mechanisms of mechanical and electrical disturbance due to iron toxicity. Can J Cardiol. 2009;25:213–218.
  • Crowe S, Bartfay WJ. Amlodipine decreases iron uptake and oxygen free radical production in the heart of chronically iron overloaded mice. Biol Res Nurs. 2002;3:189–197.
  • Fernandes JL, Sampaio EF, Fertrin K, et al. Amlodipine reduces cardiac iron overload in patients with thalassemia major: A pilot trial. Am J Med. 2013;126:834–837.
  • Otto-Duessel M, Brewer C, Wood JC. Interdependence of cardiac iron and calcium in a murine model of iron overload. Transl Res. 2011;157:92–99.
  • Oudit GY, Sun H, Trivieri MG, et al. L-type ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med. 2003;9:1187–1194.
  • Lopin KV, Gray IP, Obejero-Paz CA, et al. Fe(2)(+) block and permeation of cav3.1 (alpha1g) t-type calcium channels: candidate mechanism for non-transferrin-mediated fe(2)(+) influx. Mol Pharmacol. 2012;82:1194–1204.
  • Kumfu S, Chattipakorn S, Srichairatanakool S, et al. T-type calcium channel as a portal of iron uptake into cardiomyocytes of beta-thalassemic mice. Eur J Haematol. 2011;86:156–166.
  • Kumfu S, Chattipakorn S, Chinda K, et al. T-type calcium channel blockade improves survival and cardiovascular function in thalassemic mice. Eur J Haematol. 2012;88:535–548.
  • Devireddy LR, Gazin C, Zhu X, et al. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell. 2005;123:1293–1305.
  • Yang J, Goetz D, Li JY, et al. An iron delivery pathway mediated by a lipocalin. Mol Cell. 2002;10:1045–1056.
  • Xu G, Ahn J, Chang S, et al. Lipocalin-2 induces cardiomyocyte apoptosis by increasing intracellular iron accumulation. J Biol Chem. 2012;287:4808–4817.
  • Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Roles of lipocalin 2 and adiponectin in iron overload cardiomyopathy. J Cell Physiol. 2018;233:5104–5111.
  • Walker JM. The heart in thalassaemia. Eur Heart J. 2002;23:102–105.
  • Buja LM, Roberts WC. Iron in the heart. Etiology Clinical Significance Am J Med. 1971;51:209–221.
  • Borgna-Pignatti C, Rugolotto S, De Stefano P, et al. Survival and disease complications in thalassemia major. Ann N Y Acad Sci. 1998;850:227–231.
  • Ehlers KH, Levin AR, Markenson AL, et al. Longitudinal study of cardiac function in thalassemia major. Ann N Y Acad Sci. 1980;344:397–404.
  • Engle MA, Erlandson M, Smith CH. Late cardiac complications of chronic, severe, refractory anemia with hemochromatosis. Circulation. 1964;30:698–705.
  • Ladis V, Chouliaras G, Berdousi H, et al. Longitudinal study of survival and causes of death in patients with thalassemia major in greece. Ann N Y Acad Sci. 2005;1054:445–450.
  • Zurlo MG, De Stefano P, Borgna-Pignatti C, et al. Survival and causes of death in thalassaemia major. Lancet. 1989;2:27–30.
  • Kremastinos DT, Tsetsos GA, Tsiapras DP, et al. Heart failure in beta thalassemia: a 5-year follow-up study. Am J Med. 2001;111:349–354.
  • Aessopos A, Farmakis D, Hatziliami A, et al. Cardiac status in well-treated patients with thalassemia major. Eur J Haematol. 2004;73:359–366.
  • Grisaru D, Rachmilewitz EA, Mosseri M, et al. Cardiopulmonary assessment in beta-thalassemia major. Chest. 1990;98:1138–1142.
  • De Chiara B, Crivellaro W, Sara R, et al. Early detection of cardiac dysfunction in thalassemic patients by radionuclide angiography and heart rate variability analysis. Eur J Haematol. 2005;74:517–522.
  • Spirito P, Lupi G, Melevendi C, et al. Restrictive diastolic abnormalities identified by doppler echocardiography in patients with thalassemia major. Circulation. 1990;82:88–94.
  • Suarez WA, Snyder SA, Berman BB, et al. Preclinical cardiac dysfunction in transfusion-dependent children and young adults detected with low-dose dobutamine stress echocardiography. J Am Soc Echocardiogr. 1998;11:948–956.
  • Vogel M, Anderson LJ, Holden S, et al. Tissue doppler echocardiography in patients with thalassaemia detects early myocardial dysfunction related to myocardial iron overload. Eur Heart J. 2003;24:113–119.
  • Hahalis G, Manolis AS, Apostolopoulos D, et al. Right ventricular cardiomyopathy in beta-thalassaemia major. Eur Heart J. 2002;23:147–156.
  • Kremastinos DT. Heart failure in beta-thalassemia. Congest Heart Fail. 2001;7:312–314.
  • Lipschitz DA, Cook JD, Finch CA. A clinical evaluation of serum ferritin as an index of iron stores. N Engl J Med. 1974;290:1213–1216.
  • Adamkiewicz TV, Abboud MR, Paley C, et al. Serum ferritin level changes in children with sickle cell disease on chronic blood transfusion are nonlinear and are associated with iron load and liver injury. Blood. 2009;114:4632–4638.
  • Borgna-Pignatti C, Rugolotto S, De Stefano P, et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica. 2004;89:1187–1193.
  • Gabutti V, Piga A. Results of long-term iron-chelating therapy. Acta Haematol. 1996;95:26–36.
  • Olivieri NF, Nathan DG, MacMillan JH, et al. Survival in medically treated patients with homozygous beta-thalassemia. N Engl J Med. 1994;331:574–578.
  • Anderson LJ, Westwood MA, Holden S, et al. Myocardial iron clearance during reversal of siderotic cardiomyopathy with intravenous desferrioxamine: A prospective study using t2* cardiovascular magnetic resonance. Br J Haematol. 2004;127:348–355.
  • Noetzli LJ, Carson SM, Nord AS, et al. Longitudinal analysis of heart and liver iron in thalassemia major. Blood. 2008;112:2973–2978.
  • Kolnagou A, Economides C, Eracleous E, et al. Low serum ferritin levels are misleading for detecting cardiac iron overload and increase the risk of cardiomyopathy in thalassemia patients. The importance of cardiac iron overload monitoring using magnetic resonance imaging t2 and t2*. Hemoglobin. 2006;30:219–227.
  • Chapman RW, Hussain MA, Gorman A, et al. Effect of ascorbic acid deficiency on serum ferritin concentration in patients with beta-thalassaemia major and iron overload. J Clin Pathol. 1982;35:487–491.
  • Cabantchik ZI, Breuer W, Zanninelli G, et al. Lpi-labile plasma iron in iron overload. Best Pract Res Clin Haematol. 2005;18:277–287.
  • Gosriwatana I, Loreal O, Lu S, et al. Quantification of non-transferrin-bound iron in the presence of unsaturated transferrin. Anal Biochem. 1999;273:212–220.
  • Singh S, Hider RC, Porter JB. A direct method for quantification of non-transferrin-bound iron. Anal Biochem. 1990;186:320–323.
  • Zanninelli G, Breuer W, Cabantchik ZI. Daily labile plasma iron as an indicator of chelator activity in thalassaemia major patients. Br J Haematol. 2009;147:744–751.
  • Parkes JG, Hussain RA, Olivieri NF, et al. Effects of iron loading on uptake, speciation, and chelation of iron in cultured myocardial cells. J Lab Clin Med. 1993;122:36–47.
  • Porter JB, Lin KH, Beris P, et al. Response of iron overload to deferasirox in rare transfusion-dependent anaemias: equivalent effects on serum ferritin and labile plasma iron for haemolytic or production anaemias. Eur J Haematol. 2011;87:338–348.
  • al-Refaie FN, Wickens DG, Wonke B, et al. Serum non-transferrin-bound iron in beta-thalassaemia major patients treated with desferrioxamine and l1. Br J Haematol. 1992;82:431–436.
  • Piga A, Longo F, Duca L, et al. High nontransferrin bound iron levels and heart disease in thalassemia major. Am J Hematol. 2009;84:29–33.
  • Jacobs EM, Hendriks JC, van Tits BL, et al. Results of an international round robin for the quantification of serum non-transferrin-bound iron: need for defining standardization and a clinically relevant isoform. Anal Biochem. 2005;341:241–250.
  • Barosi G, Arbustini E, Gavazzi A, et al. Myocardial iron grading by endomyocardial biopsy. A clinico-pathologic study on iron overloaded patients. Eur J Haematol. 1989;42:382–388.
  • Fitchett DH, Coltart DJ, Littler WA, et al. Cardiac involvement in secondary haemochromatosis: a catheter biopsy study and analysis of myocardium. Cardiovasc Res. 1980;14:719–724.
  • Pennell DJ. T2* magnetic resonance and myocardial iron in thalassemia. Ann N Y Acad Sci. 2005;1054:373–378.
  • Carpenter JP, He T, Kirk P, et al. On t2* magnetic resonance and cardiac iron. Circulation. 2011;123:1519–1528.
  • Wood JC, Otto-Duessel M, Aguilar M, et al. Cardiac iron determines cardiac t2*, t2, and t1 in the gerbil model of iron cardiomyopathy. Circulation. 2005;112:535–543.
  • Anderson LJ, Holden S, Davis B, et al. Cardiovascular t2-star (t2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22:2171–2179.
  • Westwood MA, Wonke B, Maceira AM, et al. Left ventricular diastolic function compared with t2* cardiovascular magnetic resonance for early detection of myocardial iron overload in thalassemia major. J Magn Reson Imaging. 2005;22:229–233.
  • Kremastinos DT, Farmakis D, Aessopos A, et al. Beta-thalassemia cardiomyopathy: history, present considerations, and future perspectives. Circ Heart Fail. 2010;3:451–458.
  • Pennell DJ, Udelson JE, Arai AE, et al. Cardiovascular function and treatment in beta-thalassemia major: a consensus statement from the american heart association. Circulation. 2013;128:281–308.
  • Porter J, Viprakasit V. Iron overload and chelation. In: Cappellini MD, Cohen A, Porter J, et al., editor. Guidelines for the management of transfusion dependent thalassaemia (tdt). 3rd ed. Nicosia: Thalassaemia International Federation; 2014. p. 42–97.
  • Cogliandro T, Derchi G, Mancuso L, et al. Guideline recommendations for heart complications in thalassemia major. J Cardiovasc Med (Hagerstown). 2008;9:515–525.
  • Meloni A, Positano V, Pepe A, et al. Preferential patterns of myocardial iron overload by multislice multiecho t*2 cmr in thalassemia major patients. Magn Reson Med. 2010;64:211–219.
  • Pepe A, Positano V, Santarelli MF, et al. Multislice multiecho t2* cardiovascular magnetic resonance for detection of the heterogeneous distribution of myocardial iron overload. J Magn Reson Imaging. 2006;23:662–668.
  • Kaye SB, Owen M. Cardiac arrhythmias in thalassaemia major: evaluation of chelation treatment using ambulatory monitoring. Br Med J. 1978;1:342.
  • Cavallaro L, Meo A, Busà G, et al. Arrhythmia in thalassemia major: evaluation of iron chelating therapy by dynamic ecg. Minerva Cardioangiol. 1993;41:297–301.
  • Walker M, Wood J. Cardiac complications in thalassemia major. In: Cappellini MD, Cohen A, Porter J, et al., editor. Guidelines for the management of transfusion dependent thalassaemia (tdt). 3rd ed. Nicosia: Thalassaemia International Federation; 2014. p. 98–113.
  • Bayraktaroglu S, Aydinok Y, Yildiz D, et al. The relationship between the myocardial t2* value and left ventricular volumetric and functional parameters in thalassemia major patients. Diagn Interv Radiol. 2011;17:346–351.
  • Brili SV, Tzonou AI, Castelanos SS, et al. The effect of iron overload in the hearts of patients with beta-thalassemia. Clin Cardiol. 1997;20:541–546.
  • Mariotti E, Agostini A, Angelucci E, et al. Reduced left ventricular contractile reserve identified by low dose dobutamine echocardiography as an early marker of cardiac involvement in asymptomatic patients with thalassemia major. Echocardiography. 1996;13:463–472.
  • Westwood MA, Anderson LJ, Maceira AM, et al. Normalized left ventricular volumes and function in thalassemia major patients with normal myocardial iron. J Magn Reson Imaging. 2007;25:1147–1151.
  • Task force of the european society of cardiology and the north american society of pacing and electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93:1043–1065.
  • Chattipakorn N, Incharoen T, Kanlop N, et al. Heart rate variability in myocardial infarction and heart failure. Int J Cardiol. 2007;120:289–296.
  • Kleiger RE, Miller JP, Bigger JT Jr., et al. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59:256–262.
  • Zuanetti G, Neilson JM, Latini R, et al. Prognostic significance of heart rate variability in post-myocardial infarction patients in the fibrinolytic era. The gissi-2 results. Gruppo italiano per lo studio della sopravvivenza nell’ infarto miocardico. Circulation. 1996;94:432–436.
  • Stein PK, Domitrovich PP, Huikuri HV, et al. Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction. J Cardiovasc Electrophysiol. 2005;16:13–20.
  • Nolan J, Batin PD, Andrews R, et al. Prospective study of heart rate variability and mortality in chronic heart failure: results of the united kingdom heart failure evaluation and assessment of risk trial (uk-heart). Circulation. 1998;98:1510–1516.
  • Saul JP, Arai Y, Berger RD, et al. Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am J Cardiol. 1988;61:1292–1299.
  • Franzoni F, Galetta F, Di Muro C, et al. Heart rate variability and ventricular late potentials in beta-thalassemia major. Haematologica. 2004;89:233–234.
  • Gurses D, Ulger Z, Levent E, et al. Time domain heart rate variability analysis in patients with thalassaemia major. Acta Cardiol. 2005;60:477–481.
  • Incharoen T, Thephinlap C, Srichairatanakool S, et al. Heart rate variability in beta-thalassemic mice. Int J Cardiol. 2007;121:203–204.
  • Oztarhan K, Delibas Y, Salcioglu Z, et al. Assessment of cardiac parameters in evaluation of cardiac functions in patients with thalassemia major. Pediatr Hematol Oncol. 2012;29:220–234.
  • Rutjanaprom W, Kanlop N, Charoenkwan P, et al. Heart rate variability in beta-thalassemia patients. Eur J Haematol. 2009;83:483–489.
  • Thephinlap C, Phisalaphong C, Lailerd N, et al. Reversal of cardiac iron loading and dysfunction in thalassemic mice by curcuminoids. Med Chem. 2011;7:62–69.
  • Veglio F, Melchio R, Rabbia F, et al. Blood pressure and heart rate in young thalassemia major patients. Am J Hypertens. 1998;11:539–547.
  • Kardelen F, Tezcan G, Akcurin G, et al. Heart rate variability in patients with thalassemia major. Pediatr Cardiol. 2008;29:935–939.
  • Koonrungsesomboon N, Tantiworawit A, Phrommintikul A, et al. Heart rate variability for early detection of iron overload cardiomyopathy in beta-thalassemia patients. Hemoglobin. 2015;39:281–286.
  • Silvilairat S, Charoenkwan P, Saekho S, et al. Heart rate variability for early detection of cardiac iron deposition in patients with transfusion-dependent thalassemia. PLoS One. 2016;11:e0164300.
  • Wijarnpreecha K, Siri-Angkul N, Shinlapawittayatorn K, et al. Heart rate variability as an alternative indicator for identifying cardiac iron status in non-transfusion dependent thalassemia patients. PLoS One. 2015;10:e0130837.
  • Pennell DJ, Berdoukas V, Karagiorga M, et al. Randomized controlled trial of deferiprone or deferoxamine in beta-thalassemia major patients with asymptomatic myocardial siderosis. Blood. 2006;107:3738–3744.
  • Tanner MA, Galanello R, Dessi C, et al. Myocardial iron loading in patients with thalassemia major on deferoxamine chelation. J Cardiovasc Magn Reson. 2006;8:543–547.
  • Brittenham GM, Griffith PM, Nienhuis AW, et al. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N Engl J Med. 1994;331:567–573.
  • Wolfe L, Olivieri N, Sallan D, et al. Prevention of cardiac disease by subcutaneous deferoxamine in patients with thalassemia major. N Engl J Med. 1985;312:1600–1603.
  • Aldouri MA, Wonke B, Hoffbrand AV, et al. High incidence of cardiomyopathy in beta-thalassaemia patients receiving regular transfusion and iron chelation: reversal by intensified chelation. Acta Haematol. 1990;84:113–117.
  • Freeman AP, Giles RW, Berdoukas VA, et al. Early left ventricular dysfunction and chelation therapy in thalassemia major. Ann Intern Med. 1983;99:450–454.
  • Smith GC, Alpendurada F, Carpenter JP, et al. Effect of deferiprone or deferoxamine on right ventricular function in thalassemia major patients with myocardial iron overload. J Cardiovasc Magn Reson. 2011;13:34.
  • Pennell DJ, Porter JB, Cappellini MD, et al. Deferasirox for up to 3 years leads to continued improvement of myocardial t2* in patients with beta-thalassemia major. Haematologica. 2012;97:842–848.
  • Pennell DJ, Porter JB, Cappellini MD, et al. Efficacy of deferasirox in reducing and preventing cardiac iron overload in beta-thalassemia. Blood. 2010;115:2364–2371.
  • Pennell DJ, Porter JB, Piga A, et al. A 1-year randomized controlled trial of deferasirox vs deferoxamine for myocardial iron removal in beta-thalassemia major (cordelia). Blood. 2014;123:1447–1454.
  • Wongjaikam S, Kumfu S, Chattipakorn SC, et al. Current and future treatment strategies for iron overload cardiomyopathy. Eur J Pharmacol. 2015;765:86–93.
  • Berdoukas V, Carson S, Nord A, et al. Combining two orally active iron chelators for thalassemia. Ann Hematol. 2010;89:1177–1178.
  • Voskaridou E, Christoulas D, Terpos E. Successful chelation therapy with the combination of deferasirox and deferiprone in a patient with thalassaemia major and persisting severe iron overload after single-agent chelation therapies. Br J Haematol. 2011;154:654–656.
  • Lal A, Porter J, Sweeters N, et al. Combined chelation therapy with deferasirox and deferoxamine in thalassemia. Blood Cells Mol Dis. 2013;50:99–104.
  • Zhang JP, Zhang YY, Zhang Y, et al. Salvia miltiorrhiza (danshen) injection ameliorates iron overload-induced cardiac damage in mice. Planta Med. 2013;79:744–752.
  • Lin H, Lian WS, Chen HH, et al. Adiponectin ameliorates iron-overload cardiomyopathy through the pparalpha-pgc-1-dependent signaling pathway. Mol Pharmacol. 2013;84:275–285.
  • Ozdemir ZC, Koc A, Aycicek A, et al. N-acetylcysteine supplementation reduces oxidative stress and DNA damage in children with beta-thalassemia. Hemoglobin. 2014;38:359–364.
  • Dissayabutra T, Tosukhowong P, Seksan P. The benefits of vitamin c and vitamin e in children with beta-thalassemia with high oxidative stress. J Med Assoc Thai. 2005;88(Suppl 4):S317–21.
  • Yanpanitch OU, Hatairaktham S, Charoensakdi R, et al. Treatment of beta-thalassemia/hemoglobin e with antioxidant cocktails results in decreased oxidative stress, increased hemoglobin concentration, and improvement of the hypercoagulable state. Oxid Med Cell Longev. 2015;2015:537954.
  • Kumfu S, Khamseekaew J, Palee S, et al. A combination of an iron chelator with an antioxidant exerts greater efficacy on cardioprotection than monotherapy in iron-overload thalassemic mice. Free Radic Res. 2018;52:70–79.
  • Wongjaikam S, Kumfu S, Khamseekaew J, et al. Restoring the impaired cardiac calcium homeostasis and cardiac function in iron overload rats by the combined deferiprone and n-acetyl cysteine. Sci Rep. 2017;7:44460.
  • Wongjaikam S, Kumfu S, Khamseekaew J, et al. Combined iron chelator and antioxidant exerted greater efficacy on cardioprotection than monotherapy in iron-overloaded rats. PLoS One. 2016;11:e0159414.
  • Clinicaltrials.gov. Amlodipine as adjuvant treatment to iron chelation for prevention of cardiac iron overload in thalassemia patients. [2018 Feb 12]. Available from: www.Clinicaltrials.Gov/ct2/show/nct02474420.
  • Shakoor A, Zahoor M, Sadaf A, et al. Effect of l-type calcium channel blocker (amlodipine) on myocardial iron deposition in patients with thalassaemia with moderate-to-severe myocardial iron deposition: protocol for a randomised, controlled trial. BMJ Open. 2014;4:e005360.
  • Fernandes JL, Loggetto SR, Verissimo MP, et al. A randomized trial of amlodipine in addition to standard chelation therapy in patients with thalassemia major. Blood. 2016;128:1555–1561.
  • Eghbali A, Kazemi H, Taherahmadi H, et al. A randomized, controlled study evaluating effects of amlodipine addition to chelators to reduce iron loading in patients with thalassemia major. Eur J Haematol. 2017;99:577–581.
  • Perez-Reyes E, Van Deusen AL, Vitko I. Molecular pharmacology of human cav3.2 t-type ca2+ channels: block by antihypertensives, antiarrhythmics, and their analogs. J Pharmacol Exp Ther. 2009;328:621–627.
  • Kumfu S, Khamseekaew J, Palee S, et al. Combined iron chelator and t-type calcium channel blocker exerts greater efficacy on cardioprotection than monotherapy in iron-overload thalassemic mice. Eur J Pharmacol. 2018;822:43–50.
  • Kumfu S, Chattipakorn SC, Fucharoen S, et al. Dual t-type and l-type calcium channel blocker exerts beneficial effects in attenuating cardiovascular dysfunction in iron-overloaded thalassaemic mice. Exp Physiol. 2016;101:521–539.
  • Guo S, Casu C, Gardenghi S, et al. Reducing tmprss6 ameliorates hemochromatosis and beta-thalassemia in mice. J Clin Invest. 2013;123:1531–1541.
  • Schmidt PJ, Toudjarska I, Sendamarai AK, et al. An rnai therapeutic targeting tmprss6 decreases iron overload in hfe(-/-) mice and ameliorates anemia and iron overload in murine beta-thalassemia intermedia. Blood. 2013;121:1200–1208.
  • Casu C, Oikonomidou PR, Chen H, et al. Minihepcidin peptides as disease modifiers in mice affected by beta-thalassemia and polycythemia vera. Blood. 2016;128:265–276.
  • Nai A, Pagani A, Mandelli G, et al. Deletion of tmprss6 attenuates the phenotype in a mouse model of beta-thalassemia. Blood. 2012;119:5021–5029.
  • Angellucci E, Srivastava A, Usai S. Haemopoietic stem cell transplantation. In: Cappellini MD, Cohen A, Porter J, et al., editor. Guidelines for the management of transfusion dependent thalassaemia (tdt). 3rd ed. Nicosia: Thalassaemia International Federation; 2014. p. 186–191.
  • Mariotti E, Angelucci E, Agostini A, et al. Evaluation of cardiac status in iron-loaded thalassaemia patients following bone marrow transplantation: improvement in cardiac function during reduction in body iron burden. Br J Haematol. 1998;103:916–921.
  • Angelucci E, Pilo F. Management of iron overload before, during, and after hematopoietic stem cell transplantation for thalassemia major. Ann N Y Acad Sci. 2016;1368:115–121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.