570
Views
0
CrossRef citations to date
0
Altmetric
Review

Novel treatments to tackle myelofibrosis

, , , &
Pages 889-902 | Received 18 Aug 2018, Accepted 11 Oct 2018, Published online: 26 Oct 2018

References

  • Barosi G, Mesa RA, Thiele J, et al. International Working Group for Myelofibrosis Research and Treatment (IWG-MRT). Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia. 2008;22:437–438.
  • Tefferi A. Primary myelofibrosis: 2017 update on diagnosis, risk-stratification and management. Am J Hematol. 2016;91:1262–1271.
  • Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129(6):667–679.
  • Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27:1861–1869.
  • Guglielmelli P, Lasho TL, Rotunno G, et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia. 2014;28:1804–1810.
  • Tefferi A, Guglielmelli P, Lasho TL, et al. CALR and ASXL1 mutation-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014;28:1494–1500.
  • Harutyunyan A, Klampfl T, Cazzola M, et al. p53 lesions in leukemic transformation. N Engl J Med. 2011;364(5):488–490.
  • Rampal R, Ahn J, Abdel-Wahab O, et al. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci. 2014;111(50):e5401–e5410.
  • Barbui T, Tefferi A, Vannucchi AR, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia. 2018;32(5):1057–1069.
  • Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113:2895–2901.
  • Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study of the IWG-MRT (International Working Group for Myelofibrosis Research and Treatment). Blood. 2010;115:1703–1708.
  • Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count and transfusion status. J Clin Oncol. 2011;29:392–397.
  • Guglielmelli P, Lasho TL, Rotunno G, et al. MIPSS70: mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol. 2017;36(4):310–318.
  • Tefferi A, Guglielmelli P, Nicolosi M, et al. GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis. Leukemia. 2018;32(7):1631–1642.
  • Vannucchi AM, Harrison CN. Emerging treatments for classical myeloproliferative neoplasms. Blood. 2017;129(6):693–702.
  • Tremblay D, Marcellino B, Mascarenhas J. Pharmacotherapy of myelofibrosis. Drugs. 2017;77:1549–1563.
  • Pettit K, Odenike O. Novel therapies for myelofibrosis. Curr Hematol Malig Rep. 2017;12:611–624.
  • Shreenivas A, Mascarenhas J. Emerging drugs for the treatment of myelofibrosis. Exp Opin Emerging Drugs. 2018;23(1):37–49.
  • Harrington PM, Harrison CN. Beyond JAK-2: potential targets for myeloproliferative neoplasm therapy. Exp Rev Hematol. 2018;11(4):315–324.
  • Bose P, Verstovsek S. Investigational histone deacetylase inhibitors (HDACi) in myeloproliferative neoplasms. Exp Opin Investg Drugs. 2016;25(12):1393–1403.
  • Tefferi A, Al-Ali HK, Barosi G, et al. A randomized study of pomalidomide vs placebo in persons with myeloproliferative neoplasm-associated myelofibrosis and RBC-transfusion dependence. Leukemia. 2017;31(5):1252.
  • Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Eng J Med. 2012;366(9):799–807.
  • Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Eng J Med. 2012;366(9):787–798.
  • Verstovsek S, Gotlib J, Mesa R, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017;10:156.
  • Marti-Carvajal AJ, Anand V, Sola I. Janus kinase-1 and Janus kinase-2 inhibitors for treating myelofibrosis. Cochrane Database Syst Rev. 2015;4:CD010298.
  • Cervantes F, Pereira A. Does ruxolitinib prolong the survival of patients with myelofibrosis? Blood. 2017;129(7):832–837.
  • Porpaczy E, Tripolt S, Hoelbl-Kovacic A, et al. Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood. 2018;132(7):694–706.
  • Mesa RA, Cortes J. Optimizing management of ruxolitinib in patients with myelofibrosis: the need for individualized dosing. J Hematol Oncol. 2013;6:79.
  • Talpz M, Paquette R, Afrin L, et al. Interim analysis of safety and efficacy of ruxolitinib in patients with myelofibrosis and low platelet counts. J Hematol Oncol. 2013;6:81.
  • Grunwald MR, Spivak JL. Ruxolitinib enhances platelet production in patients with thrombocytopenic myelofibrosis. J Clin Oncol. 2014;32:2013–2015.
  • Bjorn ME, Holmstrom MO, Hasselbalch HC, et al. Ruxolitinib is manageable in patients with myelofibrosis and severe thrombocytopenia: a report on 12 Danish patients. Leuk Lymph. 2016;57(1):125–128.
  • Ellis MH, Lavi N, Mischenko E, et al. Ruxolitinib treatment for myelofibrosis: efficacy and tolerability in routine practice. Leukemia Res. 2015;39:1154–1158.
  • Bjorn ME, Hasselbalch HC. Minimal residual disease or cure in MPNs? Rationales and perspectives on combination therapy with interferon-alpha2 and ruxolitinib. Exp Rev Hematol. 2017;10(5):393–404.
  • Quintas-Cardama A, Tong W, Kantarjian H, et al. A phase II study of 5-azacitidine for patients with primary and post-essential thrombocythemia/polycythemia vera myelofibrosis. Leukemia. 2008;22:965–970.
  • Thepot S, Itzykson R, Seegers V, et al. Treatment of progression of Philadelphia-negtive myeloproliferative neoplasms to myelodysplastic syndromes or actue myeloid leukemia by azacitidine: a report on 54 cases on behalf of the Groupe Francophone des Myelodysplasies (GFM). Blood. 2010;116(19):3735–3742.
  • Daver N, Cortes JE, Pemmaraju N, et al. Ruxolitinib (RUX) in combination with 5-azacytidine (AZA) as therapy for patients (pts) with myelofibrosis (MF). Am Soc Hematol Annu Meet Exposition, Blood, San Diego, Ca. 2016;128:1127.
  • Joy Ho P, Bajel A, Burbury K, et al. A case-based discussion of clinical problems in the management of patients treated with ruxolitinib for myelofibrosis. Intern Med J. 2017;47(3):262–268.
  • Komrokji RS, Seymour JF, Roberts AW, et al. Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis. Blood. 2015;125(17):2649–2655.
  • Verstovsek S, Odenike O, Singer JW, et al. Phase 1/2 study of pacritinib, a next generation JAK2/FLT3 inhibitor, in myelofibrosis or other myeloid malignancies. J Hematol Oncol. 2016;9:137.
  • Mesa RA, Vannucchi AM, Mead A, et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Hematol. 2017;4(5):e225–e236.
  • Mascarenhas J, Hoffman R, Talpaz M, et al. Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis. A randomized clinical trial. JAMA Oncol. 2018;4(5):652–659.
  • Mascarenhas J, Virtgaym E, Stal M, et al. Outcomes of patients with myelofibrosis treated with compassionate use pacritinib: a sponsor-independent international study. Annals Hematol. 2018;97(8):1369–1374.
  • Gupta V, Mesa RA, Michael WN, et al. A phase 1/2, open-label study evaluating twice-daily administration of momelotinib in myelofibrosis. Haematologica. 2017;102:94–102.
  • Mesa RA, Kiladjian JJ, Catalano JV, et al. SIMPLIFY-1: A phase III randomized trail of momelotinib versus ruxolitinib in Janus kinase inhibitor-naïve patients with myelofibrosis. J Clin Oncol. 2017;35(34):3844–3850.
  • Harrison CN, Vannucchi A, Platzbecker U, et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematol. 2018;5:e73–81.
  • Mascarenhas J, Hoffman R. Don’t Judge a JAK2 inhibitor by spleen response alone. Lancet Haematol. 2018;5:e56–57.
  • Pardanani A, Harrison CN, Cortes JE, et al. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol. 2015;1(5):643–651.
  • Harrison CN, Schaap N, Vannucchi AM, et al. Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study. Lancet Haematol. 2017;4(7):e317–e324.
  • Curto-Garcia N, Harrison CN, McLornan DP, et al. Thiamine deficiency appears uncommon in patients with myeloproliferative neoplasms. Br J Hematol. 2017;178:338–340.
  • Zhang Q, Zhang Y, Diamond S, et al. The Janus kinase 2 inhibitor fedratinib inhibits thiamine uptake: a putative mechanism for the onset of Wernicke’s encephalopathy. Drug Metab Dispos. 2014;42(10):1656–1662.
  • Hazell AS, Afadlal S, Cheresh DA, et al. Treatment of rats with the JAK-2 inhibitor fedratinib does not lead to experimental Wernicke’s encephalopathy. Neurosci Lett. 2017;642:163–167.
  • Kremyanskaya M, Mascarenhas J, Rampal R, et al. Development of extramedullary sites of leukemia during ruxolitinib treatment for myelofibrosis. Br J Haematol. 2014;167(1):144–146.
  • Newberry KJ, Patel K, Masarova L, et al. Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood. 2017;130(9):1125–1131.
  • Foucar CE, Stein BL. Contemporary use of interferon therapy in the myeloproliferative neoplasms. Curr Hematol Malig Rep. 2017;12(5):406–414.
  • Silver RT, Barel AC, Lascu T, et al. The effect of initial molecular profile on response to recombinant interferon-α (rIFNα) treatment in early myelofibrosis. Cancer. 2017;123(14):2680–2687.
  • Ianotto JC, Boyer-Perrard F, Gyan E, et al. Efficacy and safety of pegylated-interferon α-2a in myelofibrosis: a study by the FIM and GEM French coopoerative groups. Br J Haematol. 2013;162:783–791.
  • Kroger N, Zabelina T, Alchalby H, et al. Dynamic of bone marrow fibrosis regression predicts survival after allogeneic stem cell transplantation for myelofibrosis. Biol Blood Marrow Transplant. 2014;20:812–815.
  • Gupta V, Hari P, Hoffman R. Allogeneic hematopoietic cell transplantation for myelofibrosis in the era of JAK inhibitors. Blood. 2012;120(7):1367–1379.
  • Kroger N, Gioggino T, Scott BL, et al. Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis. Blood. 2015;12(21):3347–3350.
  • Guardiola P, Anderson JE, Bandini G, et al. Allogeneic stem cell transplantation for agnogenic myeloid metaplasia: a European Group for Blood and Marrow Transplantation, Société Française de Greffe de Moelle, Gruppo Italiano per il Trapianto del Midollo Osseo, and Fred Hutchinson Cancer Research Center collaborative study. Blood. 1999;93(9):2831–2838.
  • Deeg HJ, Gooley TA, Flowers ME, et al. Allogeneic hematopoietic stem cell transplantation for myelofibrosis. Blood. 2003;102(12):3912–3918.
  • Kerbauy DM, Gooley TA, Sale GE, et al. Hematopoietic cell transplantation as curative therapy for idiopathic myelofibrosis, advanced polycythemia vera, and essential thrombocythemia. Biol Blood Marrow Transplant. 2007;13(3):355–365.
  • Gupta V, Malone AK, Hari PN, et al. Reduced-intensity hematopoietic cell transplantation for patients with primary myelofibrosis: a cohort analysis from the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2014;20:89–97.
  • Kroger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009;114(26):5264–5270.
  • Rondelli D, Goldberg JD, Isola L, et al. MPD-RC 101 prospective study of reduced-intensity allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. Blood. 2014;124(7):1183–1191.
  • Robin M, Porcher R, Wolschke C, et al. Outcome after transplantation according to reduced-intensity conditioning regimen in patients undergoing transplantation for myelofibrosis. Biol Blood Marrow Transplant. 2016;22:1206–1211.
  • Gupta V, Kroger N, Aschan J, et al. A retrospective comparison of conventional intensity conditioning and reduced-intensity conditioning for allogeneic hematopoietic cell transplantation in myelofibrosis. Bone Marrow Transplant. 2009;44(5):317–320.
  • Takagi S, Ota Y, Uchida N, et al. Successful engraftment after reducced-intensity umbilical cord blood transplantation for myelofibrosis. Blood. 2010;116(4):649–652.
  • Robin M, Giannotti F, Deconinck E, et al. Unrelated cord blood transplantation for patients with primary or secondary myelofibrosis. Biol Blood Marrow Transplant. 2014;20(11):1841–1846.
  • Bregante S, Dominietto A, Ghiso A, et al. Improved outcome of alternative donor transplantations in patients with myelofibrosis: from unrelated to haploidentical family donors. Biol Blood Marrow Transplant. 2016;22:324–329.
  • Keyzner A, Han S, Shapiro S, et al. Outcome of allogeneic hematopoietic stem cell transplantation for patients with chronic and advanced phase myelofibrosis. Biol Blood Marrow Transplant. 2016;22(2):2180–2186.
  • Lussana F, Rambaldi A, Finazzi MC, et al. Allogeneic hematopoietic stem cell transplantation in patients with polycythemia vera or essential thrombocythemia transformed to myelofibrosis or acute myeloid leukemia: a report from the MPN Subcommittee of the Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation. Haematologica. 2014;99(5):916–921.
  • Alchalby H, Zabelina T, Stubig T, et al. Allogeneic stem cell transplantation for myelofibrosis with leukemic transformation: a study from the Myeloproliferative Neoplasm Subcommittee of the CMWP of the European Group for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2014;20(2):279–281.
  • Scott BL, Gooley TA, Sorror ML, et al. The Dynamic International Prognostic Scoring System for myelofibrosis predicts outcomes after hematopoietic cell transplantation. Blood. 2012;119(11):2657.
  • Kroger N, Panagiota V, Badbaran A, et al. Impact of molecular genetics on outcome in myelofibrosis patients after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2017;23:1095–1101.
  • McLornan DP, Szydlo R, Robin M, et al. Outcome of patients with Myelofibrosis relapsing after allogeneic stem cell transplant: a retrospective study by the Chronic Malignancies Working Party of EBMT. Br J Haematol. 2018;182(3):418–422.
  • Shah MV, Patel KP, Luthra R, et al. Sensitive PCR-based monitoring and early detection of relapsed JAK2 V617F myelofibrosis following transplantation. Br J Haematol. 2017. Epub.
  • Lange T, Edelmann A, Sieboltz U, et al. JAK2 p.V617F allele burden in myeloproliferative neoplasms one month after allogeneic stem cell transplantation significantly predicts outcome and risk of relapse. Haematologica. 2013;98(5):722–728.
  • Haslam K, Langabeer SE. Monitoring minimal residual disease in the myeloproliferative neoplasms: current applications and emerging approaches. Biomed Res Int 2016;2016.
  • Kroger N, Alchalby H, Klyuchnikov E, et al. JAK2-V617F-triggered preemptive and salvage adoptive immunotherapy with donor-lymphocyte infusion in patients with myelofibrosis after allogeneic stem cell transplantation. Blood. 2009;113(8):1866–1868.
  • Klyuchnikov E, Holler E, Bornhauser M, et al. Donor lymphocyte infusions and second transplantation as salvage treatment for relapsed myelofibrosis after reduced-intensity allografting. Br J Haematol. 2012;159(2):172–181.
  • Alchalby H, Yunus DR, Zabelina T, et al. Incidence and risk factors of poor graft function after allogeneic stem cell transplantation for myelofibrosis. Bone Marrow Transplant. 2016;51(9):1223–1227.
  • Hart C, Klatt S, Barop J, et al. Splenic pooling and loss of VCAM-1 causes an engraftment defect in patients with myelofibrosis after allogeneic hematopoietic stem cell transplantation. Haematologica. 2016;101(11):1407–1416.
  • Klyuchnikov E, El-Cheikh J, Sputteek A, et al. CD34(+)-selected stem cell boost without further conditioning for poor graft function after allogeneic stem cell transplantation in patients with hematological malignancies. Biol Blood Marrow Transplant. 2014;20(3):382–386.
  • Robin M, Zine M, Chevret S, et al. The Impact of splenectomy in myelofibrosis patients before allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2017;23(6):958–964.
  • Schroeder MA, Choi J, Staser K, et al. The role of Janus kinase signaling in graft-versus-host disease and graft versus leukemia. Biol Blood Marrow Transplant. 2018;24(6):1125–1134.
  • Zeiser R, Burchert A, Lengerke C, et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia. 2015;29(10):2062–2068.
  • Kroger N, Shahnaz Syed Abd Kadir S, Zabelina T, et al. Peritransplantation ruxolitinib prevents acute graft-versus-host disease in patients with myelofibrosis undergoing allogenic stem cell transplantation. Biol Blood Marrow Transplant. 2018. Epub.
  • Baron F, Ruggeri A, Nagler A. Methods of ex vivo expansion of human cord blood cells: challenges, successes and clinical implications. Expert Rev Hematol. 2016;9(3):297–314.
  • Mocellin S, Pooley KA, Nitti D. Telomerase and the search for the end of cancer. Trends Mol Med. 2013;19:125–133.
  • Vasko T, Kaifie A, Stope MB, et al. Telomeres and telomerase in hematopietic dysfunction: prognostic implications and pharmacolicgical intevantions. Int J Mol Sci. 2017;18:2267.
  • Tefferi A, Lasho TL, Begna KH, et al. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N Eng J Med. 2015;373(10):908–919.
  • Mosoyan G, Kraus T, Ye F, et al. Imetelstat, a telomerase inhibitor, differentially affects normal and malignant megakaryopoiesis. Leukemia. 2017;31:2458–2467.
  • Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067–1073.
  • Saenz DT, Fiskus W, Manshouri T, et al. BET protein bromodomain inhibitor-based combinations are highly active against post-myeloproliferative neoplasms secondary AML cells. Leukemia. 2017;31:678–687.
  • Kleppe M, Koche R, Zou L, et al. Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms. Cancer Cell. 2018;33:29–43.
  • Carrancio S, Markovics J, Wong P, et al. An activin receptor IIA ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin. Br J Haematol. 2014;165(6):870–882.
  • Iancu-Rubin C, Mosoyan G, Wang J, et al. Stromal cell-mediated inhibition of erythropoiesis can be attenuated by Sotatercept (ACE-011), an activin receptor type II ligand trap. Exp Hematol. 2013;41(2):155–166.e17.
  • Suragani RN, Cadena SM, Cawley SM, et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med. 2014;20:408–414.
  • Komrokji R, Garcia-Manero G, Ades L, et al. Sotatercept with long-term extension for the treatment of anemia in patients with lower-risk myelodysplastic syndromes: a phase 2, dose-ranging trial. Lancet Haematol. 2018;5(2):e63–72.
  • Platzbecker U, Germing U, Gotze KS, et al. Luspatercept for the treatment of anemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017;18(10):1338–1347.
  • Bose P, Daver N, Pemmaraju N, et al. Sotatercept (ACE-011) alone or in combination with ruxolitinib in patients (pts) with myeloproliferative neoplasm (MPN)-associated myelofibrosis (MF) and anemia. Am Hematol Assoc Annu Meet Exposition, Blood, Atlanta GA. 2017;130(1):634.
  • Prokocimer M, Molchadsky A, Rotter V. Dysfunctional diversity of p53 proteins in adult acute myeloid lekemia: projections on diagnostic workup and therapy. Blood. 2017;130(6):699–712.
  • Li Q, Lozano G. Molecular pathways: targeting Mdm2 and Mdm4 in cancer therapy. Clin Cancer Res. 2013;19(1):34–41.
  • Marcellino B, Tripodi J, Lu M, et al. Advanced forms of the myeloproliferative neoplasms are associated with chromosomal abnormalities involving 1q and 12q: implicating MDM2 and MDM4 in disease progression. Am Soc Hematol Annu Meet Exposition, Blood, Atlanta. 2017;130:204.
  • Nakatake M, Monte-Mor B, Debili N, et al. JAK2(V617F) negatively regulates p53 stabilization by enhancing MDM2 via La expression in myeloproliferative neoplasms. Oncogene. 2012;31(10):1323–1333.
  • Lu M, Wang X, Li Y, et al. Combination treatment in vitro with Nutlin, a small-molecule antagonist of MDM2, and pegylated interferon-alpha 2a specifically targets JAK2V617F-positive polycythemia vera cells. Blood. 2012;120(15):3098–3105.
  • Lu M, Xia L, Li Y, et al. The orally bioavailable MDM2 antagonist RG7112 and pegylated interferon α 2a target JAK2V617F-positive progenitor and stem cells. Blood. 2014;124(5):771–779.
  • Mascarenhas J, Lu M, Virtgaym E, et al. Open label phase I study of single agent oral RG7388 (idasanutlin) in patients with polycythemia vera and essential thrombocythemia. Am Soc Hematol Annu Meet Exposition, Blood, Atlanta GA. 2017;130(1):254.
  • Neuzillet C, Tijeras-Raballand A, Cohen R, et al. Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther. 2015;147:22–31.
  • Wang JC, Chang TH, Goldberg A, et al. Quantitative analysis of growth factor production in the mechanism of fibrosis in agnogenic myeloid metaplasia. Exp Hematol. 2006;34(12):1617–1623.
  • Vannucchi AM, Bianchi L, Paoletti F, et al. A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis. Blood. 2005;105(9):3493–3501.
  • Schmitt A, Drouin A, Masse JM, et al. Polymorphonuclear neutrophil and megakaryocyte mutual involvement in myelofibrosis pathogenesis. Leuk Lymphoma. 2002;43(4):719–724.
  • O’Connor-McCourt MD, Lenferink AE, Zwaagstra J, et al. Abstract 4688: AVID200: a novel computationally-designed TGF-beta trap promoting anti-tumor T cell activity. Washington DC: American Association for Cancer Research Annual Meeting; 2017.
  • Thwaites M, Koropatnick J, Tremblay G, et al. AVID200: A novel TGF-b inhibitor for treatment of anemia associated with myelodysplastic syndromes. Am Soc Hematol Annu Meet Exposition, Blood, Atlanta GA. 2017;130(1):2532.
  • Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(22):480–489.
  • Batlevi CL, Matsuki E, Brentjens RJ, et al. Novel immunotherapies in lymphoid malignancies. Nat Rev. 2016;13:40.
  • Choi DC, Tremblay D, Iancu-Rubin C, et al. Programmed cell death-1 pathway inhibition in myeloid malignancies: implications for myeloproliferative neoplasms. Ann Hematol. 2017;96:919–927.
  • Craig R, Tripp SR, Deininger M, et al. Programmed death ligand (PD-L1) expression is increased in spleens of myelofibrosis patients. US Can Acad. 2016. Abstract 1353.
  • Prestipino A, Emhardt A, Aumann K, et al. Oncogenic JAK2V617F causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci Tansl Med. 2018;10:7729.
  • Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.
  • Bocchia M, Defina M, Aprile L, et al. Peptide vaccines for hematological malignancies: a missed promise? Int J Hematol. 2014;99(2):107–116.
  • Linette GP, Carreno BM. Neoantigen vaccines pass the immunogenicity test. Trends Mol Med. 2017;10:869–871.
  • Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations in calreticulin in myeloproliferative neoplasms. N Eng J Med. 2013;369(25):2379–2390.
  • Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Eng J Med. 2013;369(25):2391–2405.
  • Holmstrom MO, Martinenaite E, Ahmad SM, et al. The calreticulin (CALR) exon 9 mutations are promising targets for cancer immune therapy. Leukemia. 2018;32:429–437.
  • Cimen Bozkus C, Finnigan JP, Mascarnhas J, et al. Immune checkpoint blockade enhances mutated calreticulin-induced T-Cell immunity in myeloproliferative neoplasms. Am Soc Hematol Annu Meet Exposition, Blood, Atlanta GA. 2017;130(1):384.
  • Holmstrom MO, Hjortso MD, Ahmad SM. The JAK2V617F mutation is a target for specific T cells in the JAK2V617F-positive myeloproliferative neoplasms. Leukemia. 2017;31:495–948.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.