612
Views
12
CrossRef citations to date
0
Altmetric
Review

Potential of NK cells in multiple Myeloma therapy

ORCID Icon, , , &
Pages 425-435 | Received 10 Nov 2018, Accepted 07 May 2019, Published online: 22 May 2019

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018 Jan;68(1):7–30.
  • Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014 Nov;15(12):e538–48.
  • Abel AM, Yang C, Thakar MS, et al. Natural Killer Cells: development, Maturation, and Clinical Utilization. Front Immunol. 2018;9:1869.
  • Seaman WE, Sleisenger M, Eriksson E et al. Depletion of natural killer cells in mice by monoclonal antibody to NK-1.1. Reduction in host defense against malignancy without loss of cellular or humoral immunity. J Immunol. 1987 Jun 15;138(12):4539–4544.
  • Strayer DR, Carter WA, Mayberry SD, et al. Low natural cytotoxicity of peripheral blood mononuclear cells in individuals with high familial incidences of cancer. Cancer Res. 1984 Jan;44(1):370–374.
  • Imai K, Matsuyama S, Miyake S, et al. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet. 2000 Nov 25;356(9244):1795–1799.
  • Caligiuri MA Human natural killer cells. Blood. 2008 Aug 1;112(3):461–469.
  • Godfrey J, Benson DM Jr. The role of natural killer cells in immunity against multiple myeloma. Leuk Lymphoma. 2012 Sep;53(9):1666–1676.
  • Ljunggren HG, Karre K Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med. 1985 Dec 1;162(6):1745–1759.
  • Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016 Jan;16(1):7–19.
  • Pegram HJ, Andrews DM, Smyth MJ, et al. Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 2011 Feb;89(2):216–224.
  • Kumar S Natural killer cell cytotoxicity and its regulation by inhibitory receptors. Immunology. 2018 Jul;154(3):383–393.
  • Krzewski K, Strominger JL The Killer’s Kiss: the many functions of NK cell immunological synapses. Curr Opin Cell Biol. 2008 Jul 17;20(5):597–605.
  • Krzewski K, Coligan J. Human NK cell lytic granules and regulation of their exocytosis [Review]. Front Immunol 2012 2012 November 09;3 335.
  • Cullen SP, Martin SJ Fas and TRAIL ‘death receptors’ as initiators of inflammation: implications for cancer. Semin Cell Dev Biol 2015 Mar;39:26–34.
  • Chester C, Fritsch K, Kohrt HE Natural Killer Cell Immunomodulation: targeting Activating, Inhibitory, and Co-stimulatory Receptor Signaling for Cancer Immunotherapy. Front Immunol 2015;6:601.
  • Famularo G, D’Ambrosio A, Quintieri F, et al.Natural killer cell frequency and function in patients with monoclonal gammopathies. J Clin Lab Immunol 1992;37(3):99–109.
  • Herrmann F, Lochner A, Jauer B, et al.Lymphocyte subsets in the peripheral blood of patients with multiple myeloma and benign monoclonal gammopathy. Klinische Wochenschrift 1983 Aug 15;61(16):819–821.
  • Omede P, Boccadoro M, Gallone G, et al.Multiple myeloma: increased circulating lymphocytes carrying plasma cell-associated antigens as an indicator of poor survival. Blood. 1990 Oct 1;76(7):1375–1379.
  • Österborg A, Nilsson B, Björkholm M, et al. Natural killer cell activity in monoclonal gammopathies: relation to disease activity. Eur J Haematol 1990;45(3):153–157.
  • Pessoa de Magalhaes RJ, Vidriales MB, Paiva B, et al. Analysis of the immune system of multiple myeloma patients achieving long-term disease control by multidimensional flow cytometry. Haematologica. 2013 Jan;98(1):79–86.
  • Tienhaara A, Pelliniemi TT Peripheral blood lymphocyte subsets in multiple myeloma and monoclonal gammopathy of undetermined significance. Clin Lab Haematol 1994 Sep;16(3):213–223.
  • Van den Hove LE, Meeus P, Derom A, et al.Lymphocyte profiles in multiple myeloma and monoclonal gammopathy of undetermined significance: flow-cytometric characterization and analysis in a two-dimensional correlation biplot. Ann Hematol 1998 Jun;76(6):249–256.
  • De Rossi G, De Sanctis G, Bottari V, et al.Surface markers and cytotoxic activities of lymphocytes in monoclonal gammopathy of undetermined significance and untreated multiple myeloma. Cancer Immunol Immunother 1987;25(2):133–136.
  • Fauriat C, Mallet F, Olive D, et al.Impaired activating receptor expression pattern in natural killer cells from patients with multiple myeloma. Leukemia. 2006 Apr;20(4):732–733.
  • Garcia-Sanz R, Gonzalez M, Orfao A, et al.Analysis of natural killer-associated antigens in peripheral blood and bone marrow of multiple myeloma patients and prognostic implications. Br J Haematol. 1996 Apr;93(1):81–88.
  • Gonzalez M, San Miguel JF, Gascon A, et al.Increased expression of natural-killer-associated and activation antigens in multiple myeloma. Am J Hematol. 1992 Feb;39(2):84–89.
  • Jurisic V, Srdic T, Konjevic G, et al.Clinical stage-depending decrease of NK cell activity in multiple myeloma patients. Med Oncol. 2007;24(3):312–317.
  • King MA, Radicchi-Mastroianni MA Natural killer cells and CD56+ T cells in the blood of multiple myeloma patients: analysis by 4-colour flow cytometry. Cytometry. 1996 Jun 15;26(2):121–124.
  • Nielsen H, Nielsen HJ, Tvede N, et al. Immune dysfunction in multiple myeloma. Reduced natural killer cell activity and increased levels of soluble interleukin-2 receptors. Apmis. 1991 Apr;99(4):340–346.
  • Ogmundsdottir HM Natural killer cell activity in patients with multiple myeloma. Cancer Detect Prev. 1988;12(1–6):133–143.
  • Schutt P, Brandhorst D, Stellberg W, et al.Immune parameters in multiple myeloma patients: influence of treatment and correlation with opportunistic infections. Leuk Lymphoma. 2006 Aug;47(8):1570–1582.
  • Bernal M, Garrido P, Jiménez P, et al. Changes in activatory and inhibitory natural killer (NK) receptors may induce progression to multiple myeloma: implications for tumor evasion of T and NK cells. Hum Immunol. 2009 2009 Oct 01;70(10):854–857.
  • Sarkar S, van Gelder M, Noort W, et al.Optimal selection of natural killer cells to kill myeloma: the role of HLA-E and NKG2A. Cancer Immunol Immunother. 2015 Aug;64(8):951–963.
  • Mahaweni NM, Ehlers FAI, Sarkar S, et al.NKG2A expression is not per se detrimental for the anti-multiple myeloma activity of activated natural killer cells in an in vitro system mimicking the tumor microenvironment. Front Immunol. 2018;9:1415.
  • Yadav M, Green C, Ma C, et al. Tigit, CD226 and PD-L1/PD-1 are highly expressed by marrow-infiltrating t cells in patients with multiple myeloma. Blood. 2016;128(22): 2102–2102.
  • Minnie SA, Kuns RD, Gartlan KH, et al.Myeloma-escape after stem cell transplantation is a consequence of T cell exhaustion and is prevented by TIGIT blockade. Blood. 2018 Oct 18;132(16):1675–1688.
  • Guillerey C, Harjunpää H, Carrié N, et al. TIGIT immune checkpoint blockade restores CD8+ T cell immunity against multiple myeloma. Blood. 2018 Oct 18;132(16):1689–1694.
  • Benson DM Jr., Bakan CE, Mishra A, et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood. 2010 Sep 30;116(13):2286–2294.
  • Costello RT, Boehrer A, Sanchez C, et al.Differential expression of natural killer cell activating receptors in blood versus bone marrow in patients with monoclonal gammopathy. Immunology. 2013 Jul;139(3):338–341.
  • Jinushi M, Vanneman M, Munshi NC, et al.MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA 2008;105(4):1285–1290.
  • El-Sherbiny YM, Meade JL, Holmes TD, et al.The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res. 2007 Sep 15;67(18):8444–8449.
  • Ghiringhelli F, Menard C, Terme M, et al.CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med. 2005 Oct 17;202(8):1075–1085.
  • Trotta R, Dal Col J, Yu J, et al. TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. J Immunol. 2008 Sep 15;181(6):3784–3792.
  • Yu J, Wei M, Becknell B, et al.Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity. 2006 May;24(5):575–590.
  • Guillerey C, Nakamura K, Vuckovic S, et al.Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies. Cell Mol Life Sci 2016 Apr;73(8):1569–1589.
  • Ali TH, Pisanti S, Ciaglia E, et al.Enrichment of CD56(dim)KIR + CD57 + highly cytotoxic NK cells in tumour-infiltrated lymph nodes of melanoma patients. Nat Commun. 2014 Dec 4;5:5639.
  • Kang YJ, Jeung IC, Park A, et al.An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Hum Reprod. 2014 Oct 10;29(10):2176–2189.
  • Cifaldi L, Prencipe G, Caiello I, et al.Inhibition of natural killer cell cytotoxicity by interleukin-6: implications for the pathogenesis of macrophage activation syndrome. Arthritis Rheumatol (Hoboken, NJ) 2015 Nov;67(11):3037–3046.
  • Dehghanifard A, Kaviani S, Abroun S, et al. Various signaling pathways in multiple myeloma cells and effects of treatment on these pathways. Clin Lymphoma Myeloma Leukemia. 2018 2018 May 01;18(5):311–320.
  • Nachbaur DM, Herold M, Maneschg A, et al. Serum levels of interleukin-6 in multiple myeloma and other hematological disorders: correlation with disease activity and other prognostic parameters. Ann Hematol. 1991 Feb-Mar;62(2–3):54–58.
  • Tanaka T, Kishimoto T The biology and medical implications of interleukin-6. Cancer Immunol Res. 2014 Apr;2(4):288–294.
  • Pedersen L, Idorn M, Olofsson GH, et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab. 2016 Mar 8;23(3):554–562.
  • Kozlowska AK, Tseng HC, Kaur K, et al.Resistance to cytotoxicity and sustained release of interleukin-6 and interleukin-8 in the presence of decreased interferon-gamma after differentiation of glioblastoma by human natural killer cells. Cancer Immunol Immunother 2016 Sep;65(9):1085–1097.
  • Kovacs E Interleukin-6 leads to interleukin-10 production in several human multiple myeloma cell lines. Does interleukin-10 enhance the proliferation of these cells? Leuk Res. 2010 Jul;34(7):912–916.
  • Alexandrakis MG, Goulidaki N, Pappa CA, et al. Interleukin-10 induces both plasma cell proliferation and angiogenesis in multiple myeloma. Pathol Oncol Res 2015 Sep;21(4):929–934.
  • Pittari G, Vago L, Festuccia M, et al.Restoring natural killer cell immunity against multiple myeloma in the era of new drugs. Front Immunol. 2017;8:1444.
  • Lu ZY, Bataille R, Poubelle P, et al.An interleukin 1 receptor antagonist blocks the IL-1-induced IL-6 paracrine production through a prostaglandin E2-related mechanism in multiple myeloma. Stem Cells (Dayton, Ohio) 1995 Aug;13 Suppl 2:28–34.
  • Martinet L, Jean C, Dietrich G, et al.PGE2 inhibits natural killer and gamma delta T cell cytotoxicity triggered by NKR and TCR through a cAMP-mediated PKA type I-dependent signaling. Biochem Pharmacol 2010 Sep 15;80(6):838–845.
  • Bonanno G, Mariotti A, Procoli A, et al. Indoleamine 2,3-dioxygenase 1 (IDO1) activity correlates with immune system abnormalities in multiple myeloma [journal article]. J Transl Med. 2012 December 11;10(1):247.
  • Sarkar S, Germeraad WTV, Rouschop KMA, et al. Hypoxia induced impairment of NK cell cytotoxicity against multiple myeloma can be overcome by IL-2 activation of the NK cells. PloS One. 2013;8(5):e64835.
  • Ponzetta A, Benigni G, Antonangeli F, et al.Multiple myeloma impairs bone marrow localization of effector natural killer cells by altering the chemokine microenvironment. Cancer Res 2015 Nov 15;75(22):4766–4777.
  • Gonsalves WI, Buadi FK, Ailawadhi S, et al. Utilization of hematopoietic stem cell transplantation for the treatment of multiple myeloma: a mayo stratification of myeloma and risk-adapted therapy (mSMART) consensus statement. Bone Marrow Transplant. 2019 Mar;54(3):353–367.
  • Porrata LF, Gertz MA, Inwards DJ, et al.Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation in multiple myeloma or non-hodgkin lymphoma. Blood. 2001 Aug 1;98(3):579–585.
  • Rueff J, Medinger M, Heim D, et al.Lymphocyte subset recovery and outcome after autologous hematopoietic stem cell transplantation for plasma cell myeloma. Biol Blood Marrow Transplant. 2014 Jun;20(6):896–899.
  • Savani BN, Mielke S, Adams S, et al. Rapid natural killer cell recovery determines outcome after T-cell-depleted HLA-identical stem cell transplantation in patients with myeloid leukemias but not with acute lymphoblastic leukemia [original article]. Leukemia. 2007 Aug 02 online;21:2145.
  • Savani BN, Rezvani K, Mielke S, et al. Factors associated with early molecular remission after T cell-depleted allogeneic stem cell transplantation for chronic myelogenous leukemia. Blood 2006;107(4):1688–1695.
  • Burwick N, Sharma S Glucocorticoids in multiple myeloma: past, present, and future [journal article]. Ann Hematol 2019 January 01;98(1):19–28.
  • Sharma S, Lichtenstein A Dexamethasone-induced apoptotic mechanisms in myeloma cells investigated by analysis of mutant glucocorticoid receptors. Blood 2008;112(4):1338–1345.
  • Greenstein S, Ghias K, Krett NL, et al.Mechanisms of glucocorticoid-mediated apoptosis in hematological malignancies. Clin Cancer Res 2002;8(6):1681–1694.
  • Chauhan D, Hideshima T, Pandey P, et al.RAFTK/PYK2-dependent and -independent apoptosis in multiple myeloma cells. Oncogene. 1999 Nov 18;18(48):6733–6740.
  • Burwick N, Zhang MY, de la Puente P, et al.The eIF2-alpha kinase HRI is a novel therapeutic target in multiple myeloma. Leuk Res. 2017 2017 Apr 01;55:23–32.
  • Eddy JL, Krukowski K, Janusek L, et al. Glucocorticoids regulate natural killer cell function epigenetically. Cell Immunol. 2014 2014 Jul 01;290(1):120–130.
  • Krukowski K, Eddy J, Kosik KL, et al.Glucocorticoid dysregulation of natural killer cell function through epigenetic modification. Brain Behav Immun 2011 Feb;25(2):239–249.
  • Ito T, Ando H, Suzuki T, et al. Identification of a primary target of thalidomide teratogenicity. Science 2010 Mar 12;327(5971):1345–1350.
  • Zhu YX, Braggio E, Shi CX, et al.Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood. 2011 Nov 3;118(18):4771–4779.
  • Kronke J, Udeshi ND, Narla A, et al.Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 2014 Jan 17;343(6168):301–305.
  • Lu G, Middleton RE, Sun H, et al.The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 2014 Jan 17;343(6168):305–309.
  • Bjorklund CC, Lu L, Kang J, et al. Rate of CRL4CRBN substrate ikaros and aiolos degradation underlies differential activity of lenalidomide and pomalidomide in multiple myeloma cells by regulation of c-Myc and IRF4 [original article]. Blood Cancer J. 2015 Oct 02 online;5:e354.
  • Lagrue K, Carisey A, Morgan DJ, et al. Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds. Blood. 2015 Jul 2;126(1):50–60.
  • Tai YT, Li XF, Catley L, et al. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res. 2005 Dec 15;65(24):11712–11720.
  • Benson DM Jr., Bakan CE, Zhang S, et al. IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. Blood. 2011 Dec 8;118(24):6387–6391.
  • Gandhi AK, Kang J, Havens CG, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors ikaros and aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br J Haematol. 2014 Mar;164(6):811–821.
  • Davies FE, Raje N, Hideshima T, et al.Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001 Jul 1;98(1):210–216.
  • Gorgun G, Samur MK, Cowens KB, et al. Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma. Clin Cancer Res 2015 Oct 15;21(20):4607–4618.
  • Bai A, Forman J The effect of the proteasome inhibitor lactacystin on the presentation of transporter associated with antigen processing (TAP)-dependent and TAP-independent peptide epitopes by class I molecules. J Immunol 1997;159(5):2139–2146.
  • Shi J, Tricot GJ, Garg TK, et al.Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma. Blood. 2008 Feb 1;111(3):1309–1317.
  • Yang G, Gao M, Zhang Y, et al.Carfilzomib enhances natural killer cell-mediated lysis of myeloma linked with decreasing expression of HLA class I. Oncotarget. 2015 Sep 29;6(29):26982–26994.
  • Chang SK, Hou J, Chen GG, et al.Carfilzomib combined with ex vivo-expanded patient autologous natural killer cells for myeloma immunotherapy. Neoplasma. 2018 Sep 19;65(5):720–729.
  • Lee YS, Heo W, Nam J, et al. The combination of ionizing radiation and proteasomal inhibition by bortezomib enhances the expression of NKG2D ligands in multiple myeloma cells. J Radiat Res 2018 59(3):245–252.
  • Niu C, Jin H, Li M, et al.Low-dose bortezomib increases the expression of NKG2D and DNAM-1 ligands and enhances induced NK and γδ T cell-mediated lysis in multiple myeloma. Oncotarget. 2017 8(4):5954–5964.
  • Feng X, Yan J, Wang Y, et al. The proteasome inhibitor bortezomib disrupts tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression and natural killer (NK) cell killing of TRAIL receptor-positive multiple myeloma cells. Mol Immunol. 2010 Aug;47(14):2388–2396.
  • Wang X, Ottosson A, Ji C, et al.Proteasome inhibition induces apoptosis in primary human natural killer cells and suppresses NKp46-mediated cytotoxicity. J Haematologica. 2009;94(4):470–478.
  • Kumaresan PR, Lai WC, Chuang SS, et al. CS1, a novel member of the CD2 family, is homophilic and regulates NK cell function. Mol Immunol. 2002 2002 Sep 15;39(1):1–8.
  • Hsi ED, Steinle R, Balasa B, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. J Clin Cancer Res. 2008;14(9):2775–2784.
  • Collins SM, Bakan CE, Swartzel GD, et al.Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC [journal article]. Cancer Immunol 2013 December 01;62(12):1841–1849.
  • Tai Y-T, Dillon M, Song W, et al.Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112(4):1329–1337.
  • Kurdi AT, Glavey SV, Bezman NA, et al. Antibody-dependent cellular phagocytosis by macrophages is a novel mechanism of action of elotuzumab. Mol Cancer Ther. 2018;17(7):1454–1463.
  • Zonder JA, Mohrbacher AF, Singhal S, et al.A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood. 2012;120(3):552–559.
  • Jakubowiak AJ, Benson DM, Bensinger W, et al. Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol 2012 Jun 1;30(16):1960–1965.
  • Lonial S, Vij R, Harousseau JL, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol 2012 Jun 1;30(16):1953–1959.
  • Dimopoulos MA, Lonial S, Betts KA, et al. Elotuzumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: extended 4-year follow-up and analysis of relative progression-free survival from the randomized ELOQUENT-2 trial. Cancer. 2018 Sep 11.
  • Lonial S, Dimopoulos M, Palumbo A, et al.Elotuzumab therapy for relapsed or refractory multiple myeloma. New Engl J Med 2015 Aug 13;373(7):621–631.
  • Dimopoulos MA, Dytfeld D, Grosicki S, et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. New Engl J Med 2018 Nov 8;379(19):1811–1822.
  • Jagannath S, Laubach J, Wong E, et al.Elotuzumab monotherapy in patients with smouldering multiple myeloma: a phase 2 study. Br J Haematol 2018 182(4):495–503.
  • Plesner T, Krejcik J Daratumumab for the treatment of multiple myeloma. Front Immunol 2018 9:1228.
  • Casneuf T, Xu XS, Adams HC 3rd, et al. Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma. Blood Adv 2017 Oct 24;1(23):2105–2114.
  • Wang Y, Zhang Y, Hughes T, et al.Fratricide of NK cells in daratumumab therapy for multiple myeloma overcome by ex vivo-expanded autologous NK cells. Clin Cancer Res off J Am Assoc Cancer Res. 2018 Aug 15;24(16):4006–4017.
  • Fedele PL, Willis SN, Liao Y, et al.IMiDs through loss of ikaros and aiolos primes myeloma cells for daratumumab mediated killing by upregulation of CD38. Blood. 2018 Nov 15;132(20):2166–2178.
  • Bonifant CL, Jackson HJ, Brentjens RJ, et al.Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics. 2016 3:16011.
  • Chu J, Deng Y, Benson DM, et al.CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia. 2014 Apr;28(4):917–927.
  • Jiang H, Zhang W, Shang P, et al.Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol Oncol. 2014 Mar;8(2):297–310.
  • Suck G, Odendahl M, Nowakowska P, et al. NK-92: an ‘off-the-shelf therapeutic’ for adoptive natural killer cell-based cancer immunotherapy [journal article]. Cancer Immunol Immunother 2016 April 01;65(4):485–492.
  • Williams BA, Law AD, Routy B, et al.A phase I trial of NK-92 cells for refractory hematological malignancies relapsing after autologous hematopoietic cell transplantation shows safety and evidence of efficacy. Oncotarget. 2017 8(51):89256–89268.
  • Badros A, Hyjek E, Ma N, et al. Pembrolizumab, pomalidomide, and low-dose dexamethasone for relapsed/refractory multiple myeloma. Blood. 2017;130(10):1189–1197.
  • Shi J, Tricot G, Szmania S, et al.Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br J Haematol 2008 Dec;143(5):641–653.
  • Shah N, Martin-Antonio B, Yang H, et al.Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity. PLoS One 2013;8(10):e76781.
  • Shah N, Li L, McCarty J, et al.Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br J Haematol 2017 177(3):457–466.
  • Lesokhin AM, Ansell SM, Armand P, et al.Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016 Aug 10;34(23):2698–2704.
  • Ansell S, Gutierrez ME, Shipp MA, et al.A phase 1 study of nivolumab in combination with ipilimumab for relapsed or refractory hematologic malignancies (CheckMate 039). Blood. 2016;128(22): 183–183.
  • Mateos M-V, Blacklock H, Schjesvold F, et al. A phase 3 randomized study of pembrolizumab (Pembro) plus pomalidomide (Pom) and dexamethasone (Dex) for relapsed/refractory multiple myeloma (RRMM): KEYNOTE-183. J Clin Oncol. 2018;36(15_suppl): 8021–8021.
  • Usmani SZ, Schjesvold F, Rocafiguera AO, et al. A phase 3 randomized study of pembrolizumab (pembro) plus lenalidomide (len) and low-dose dexamethasone (Rd) versus Rd for newly diagnosed and treatment-naive multiple myeloma (MM): KEYNOTE-185. J Clin Oncol. 2018;36(15_suppl): 8010–8010.
  • Gantke T, Reusch U, Kellner C, et al.AFM26 - targeting B cell maturation antigen (BCMA) for NK cell-mediated immunotherapy of multiple myeloma. Blood. 2017;130(Suppl 1): 3082–3082.
  • Gantke T, Reusch U, Kellner C, et al. AFM26 is a novel, highly potent BCMA/CD16A-directed bispecific antibody for high affinity NK-cell engagement in multiple myeloma. Blood. 2017;35(15_suppl): 8045–8045.
  • Xu W, Jones M, Liu B, et al.Efficacy and mechanism-of-action of a novel superagonist interleukin-15: interleukin-15 receptor alphaSu/Fc fusion complex in syngeneic murine models of multiple myeloma. Cancer Res. 2013 May 15;73(10):3075–3086.
  • San-Miguel J, Bladé J, Shpilberg O, et al.Phase 2 randomized study of bortezomib-melphalan-prednisone with or without siltuximab (anti–IL-6) in multiple myeloma. Blood. 2014;123(26):4136–4142.
  • Shah JJ, Feng L, Thomas SK, et al. Siltuximab (CNTO 328) with lenalidomide, bortezomib and dexamethasone in newly-diagnosed, previously untreated multiple myeloma: an open-label phase I trial [original article]. Blood Cancer J. 2016 Feb 12 online;6:e396.
  • Nijhof IS, Lammerts van Bueren JJ, van Kessel B, et al. Daratumumab-mediated lysis of primary multiple myeloma cells is enhanced in combination with the human anti-KIR antibody IPH2102 and lenalidomide. Haematologica. 2015 Feb;100(2):263–268.
  • Spear P, Barber A, Rynda-Apple A, et al. NKG2D CAR T-cell therapy inhibits the growth of NKG2D ligand heterogeneous tumors. Immunol Cell Biol 2013;91(6):435–440.
  • Nikiforow S, Werner L, Murad J, et al.Safety data from a first-in-human phase 1 trial of NKG2D chimeric antigen receptor-T cells in AML/MDS and multiple myeloma. Blood. 2016;128(22): 4052–4052.
  • Gogishvili T, Danhof S, Prommersberger S, et al.SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7+ normal lymphocytes. Blood. 2017;130(26):2838–2847.
  • Wang X, Wong CW, Urak R, et al.CS-1 re-directed central memory T cell therapy for multiple myeloma. Blood. 2014;124(21): 1114–1114.
  • Leivas A, Valeri A, Rio P, et al.Activated and expanded natural killer cells expressing an NKG2D-CAR efficiently target multiple myeloma cells. Blood. 2017;130(Suppl 1): 4466–4466.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.