101
Views
1
CrossRef citations to date
0
Altmetric
Review

Umbilical cord blood transplantation and the impact of the CTLA4 genotype on outcomes

, , &
Pages 1089-1094 | Received 07 May 2019, Accepted 11 Oct 2019, Published online: 30 Oct 2019

References

  • Park B, Yoo KH, Kim C. Hematopoietic stem cell expansion and generation: the ways to make a breakthrough. Blood Res. 2015;50(4):194–203.
  • Markiewicz M, Wojciechowska M, Wylezoł I, et al. First two successful unrelated donor bone marrow transplantations for paroxysmal nocturnal hemoglobinuria in Poland. Ann Transplant. 2005;10(3):26–30.
  • Ferrara J. Advances in the clinical management of GVHD. Best Pract Res Clin Haematol. 2008;21(4):677–682.
  • Ferrara JL, Deeg HJ. Graft-versus-host disease. N Engl J Med. 1991;324:667–674.
  • Reddy P, Ferrara JL. Immunobiology of acute graftversus- host disease. Blood Rev. 2003;17:187–194.
  • Zhao Y, Yang W, Huang Y, et al. Evolving roles for targeting CTLA-4 in cancer immunotherapy. Cell Physiol Biochem. 2018;47:721–734.
  • Hosseinzadeh F, Mohammadi S, Nejatollahi F. Production and evaluation of specific single chain antibodies against CTLA-4 for cancer-targeted therapy. Rep Biochem Mol Biol. 2017;6(1):8–14.
  • Blank CU, Enk A. Therapeutic use of anti-CTLA-4 antibodies. Int Immunol. 2015;27(1):3–10.
  • Espinoza-Delgado I, Childs RW. Nonmyeloablative transplantation for solid tumors: a new frontier for allogeneic immunotherapy. Expert Rev Anticancer Ther. 2004;4(5):865–875.
  • Cunha R, Zago MA, Querol S, et al. Impact of CTLA4 genotype and other immune response gene polymorphisms on outcomes after single umbilical cord blood transplantation. Blood. 2017;129(4):525–532.
  • Cantó E, Rodriguez-Sanchez JL, Vidal S. Distinctive response of naïve lymphocytes from cord blood to primary activation via TCR. J Leukoc Biol. 2003;74(6):998–1007.
  • Stanevsky A, Goldstein G, Nagler A. Umbilical cord blood transplantation: pros, cons and beyond. Blood Rev. 2009;23(5):199–204.
  • Ballen KK, Spitzer TR, Yeap BY, et al. Double unrelated reduced-intensity umbilical cord blood transplantation in adults. Biol Blood Marrow Transplant. 2007;13(1):82–89.
  • Laughlin MJ, Barker J, Bambach B, et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med. 2001;344(24):1815–1822.
  • Barker JN, Scaradavou A, Stevens CE. Combined effect of total nucleated cell dose and HLA match on transplantation outcome in 1061 cord blood recipients with hematologic malignancies. Blood. 2010;115(9):1843–1849.
  • Newell LF, Milano F, Nicoud IB, et al. Early CD3 peripheral blood chimerism predicts the long-term engrafting unit following myeloablative double-cord blood transplantation. Biol Blood Marrow Transplant. 2012;18(8):1243–1249.
  • Castillo N, García-Cadenas I, Díaz-Heredia C, et al. cord blood units with high CD3(+) cell counts predict early lymphocyte recovery after in vivo T cell-depleted single cord blood transplantation. Biol Blood Marrow Transplant. 2016;22(6):1073–1079.
  • Rocha V, Spellman S, Zhang MJ, et al. Effect of HLA-matching recipients to donor noninherited maternal antigens on outcomes after mismatched umbilical cord blood transplantation for hematologic malignancy. Biol Blood Marrow Transplant. 2012;18(12):1890–1896.
  • Hirayama M, Azuma E, Komada Y. Tolerogenic effect of non-inherited maternal antigens in hematopoietic stem cell transplantation. Front Immunol. 2012;3:135.
  • Sauter C, Abboud M, Jia X, et al. Serious infection risk and immune recovery after double-unit cord blood transplantation without antithymocyte globulin. Biol Blood Marrow Transplant. 2011;17(10):1460–1471.
  • Meng M, Liu Y, Wang W, et al. Umbilical cord mesenchymal stem cell transplantation in the treatment of multiple sclerosis. Am J Transl Res. 2018;10(1):212–223.
  • Goulmy E, Schipper R, Pool J, et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease. N Engl J Med. 1996;334:281–285.
  • Spierings E, Wieles B, Goulmy E. Minor histocompatibility antigens: big in tumour therapy. Trends Immunol. 2004;25:56–60.
  • Dickinson AM, Middleton PG, Rocha V. Genetic polymorphisms predicting the outcome of bone marrow transplants. Br J Haematol. 2004;127:479–490.
  • Dickinson AM, Middleton PG. Beyond the HLA typing age: genetic polymorphisms predicting transplant outcome. Blood Rev. 2005;19:333–340.
  • Bleakley M, Ridell SR. Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer. 2004;4:371–380.
  • Erfani N, Haghshenas MR, Hoseini MA, et al. Strong association of CTLA-4 variation (CT60A/G) and CTLA-4 haplotypes with predisposition of Iranians to head and neck cancer. Iran J Immunol. 2012;9:188–198.
  • Song B, Liu Y, Liu J, et al. CTLA-4 +49A>G polymorphism is associated with advanced non-small cell lung cancer prognosis. Respiration. 2011;82:439–444.
  • Karabon L, Pawlak-Adamska E, Tomkiewicz A, et al. Variations in suppressor molecule CTLA-4 gene are related to susceptibility to multiple myeloma in a polish population. Pathol Oncol Res. 2012;18:219–226.
  • Zheng J, Yu X, Jiang L, et al. Association between the cytotoxic T-lymphocyte antigen 4+49G > A polymorphism and cancer risk: a meta-analysis. BMC Cancer. 2010;10:522.
  • Karabon L, Markiewicz M, Partyka A, et al. A CT60G>A polymorphism in the CTLA-4 gene of the recipient may confer susceptibility to acute graft versus host disease after allogeneic hematopoietic stem cell transplantation. Immunogenetics. 2015;67(5–6):295–304.
  • Orrù S, Orrù N, Manolakos. et al. Recipient CTLA-4*CT60-AA genotype is a prognostic factor for acute graft-versus-host disease in hematopoietic stem cell transplantation for thalassemia E. Hum Immunol. 2012;73(3):282–286.
  • Mossallam GI, Samra MA. CTLA-4 polymorphism and clinical outcome post allogeneic hematopoietic stem cell transplantation. Hum Immunol. 2013;74(12):1643–1648.
  • Jiang Z, Chen Y, Feng X, et al. Recipient cytotoxic T lymphocyte antigen 4 +49 single-nucleotide polymorphism is not associated with acute rejection after liver transplantation in Chinese population. Int J Med Sci. 2013;10:250–254.
  • Piccioli P, Balbi G, Serra M, et al. CTLA-4 +49A>G polymorphism of recipients of HLA-matched sibling allogeneic stem cell transplantation is associated with survival and relapse incidence. Ann Hematol. 2010;89(6):613–618.
  • Hammrich J, Wittig S, Ernst T, et al. CTLA-4 polymorphisms: influence on transplant-related mortality and survival in children undergoing allogeneic hematopoietic stem cell transplantation. J Cancer Res Clin Oncol. 2018;144:587–592.
  • Xiao H, Luo Y, Lai X, et al. Genetic variations in T-cell activation and effector pathways modulate alloimmune responses after allogeneic hematopoietic stem cell transplantation in patients with hematologic malignancies. Haematologica. 2012;97(12):1804–1812.
  • Qin XY, Wang Y, Li GX, et al. CTLA-4 polymorphisms and haplotype correlate with survival in ALL after allogeneic stem cell transplantation from related HLA-haplotype-mismatched donor. J Transl Med. 2016;14:100.
  • Hammrich J, Wittig S, Ernst T, et al. CTLA‐4 polymorphism rs231775: influence on relapse and survival after allogeneic hematopoietic stem cell transplantation in childhood. Eur J Haematol. 2019;102(3):251–255.
  • Sellami MH, Bani M, Torjemane L, et al. Effect of donor CTLA-4 alleles and haplotypes on graft-versus-host disease occurrence in Tunisian patients receiving a human leukocyte antigen-identical sibling hematopoietic stem cell transplant. Hum Immunol. 2011;72(2):139–143.
  • Wu J, Tang JL, Wu SJ, et al. Functional polymorphism of CTLA-4 and ICOS genes in allogeneic hematopoietic stem cell transplantation. Clin Chim Acta. 2009;403(1–2):229–233.
  • Wang XB, Zhao X, Giscombe R, et al. A CTLA-4 gene polymorphism at position −318 in the promoter region affects the expression of protein. Genes Immun. 2002;3:233–234.
  • Murase M, Nishida T, Onizuka M, et al. Cytotoxic T-lymphocyte antigen 4 haplotype correlates with relapse and survival after allogeneic hematopoietic SCT. Bone Marrow Transplant. 2011;46(11):1444–1449.
  • Grozdics E, Berta L, Gyarmati B, et al. B7 costimulation and intracellular indoleamine 2,3-dioxygenase expression in umbilical cord blood and adult peripheral blood. Biol Blood Marrow Transplant. 2014;20(10):1659–1665.
  • Chang CC, Satwani P, Oberfield N, et al. Increased induction of allogeneic-specific cord blood CD4+CD25+ regulatory T (Treg) cells: a comparative study of naive and antigenic-specific cord blood Treg cells. Exp Hematol. 2005;33(12):1508–1520.
  • Lee CC, Lin SJ, Cheng PJ, et al. The regulatory function of umbilical cord blood CD4(+) CD25(+) T cells stimulated with anti-CD3/anti-CD28 and exogenous interleukin (IL)-2 or IL-15. Pediatr Allergy Immunol. 2009;20(7):624–632.
  • Zheng SG, Wang JH, Stohl W, et al. TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. J Immunol. 2006;176(6):3321–3329.
  • Park HB, Paik DJ, Jang E. Acquisition of anergic and suppressive activities in transforming growth factor-beta-costimulated CD4+CD25- T cells. Int Immunol. 2004;16(8):1203–1213.
  • Oida T, Xu L, Weiner HL, et al. TGF-beta-mediated suppression by CD4+CD25+ T cells is facilitated by CTLA-4 signaling. J Immunol. 2006;177(4):2331–2339.
  • Yagi H, Nomura T, Nakamura K, et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol. 2004;16(11):1643–1656.
  • Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–564.
  • Zheng Y, Josefowicz SZ, Kas A, et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature. 2007;445(7130):936–940.
  • Sadlon TJ, Wilkinson BG, Pederson S, et al. Genome-wide identification of human FOXP3 target genes in natural regulatory T cells. J Immunol. 2010;185:1071–1081.
  • Rouas R, Fayyad-Kazan H, El Zein N, et al. Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur J Immunol. 2009;39:1608–1618.
  • Liu X, Robinson SN, Setoyama T, et al. FOXP3 is a direct target of miR15a/16 in umbilical cord blood regulatory T cells. Bone Marrow Transplant. 2014;49(6):793–799.
  • Sarvaria A, Basar R, Mehta RS, et al. IL-10+ regulatory B cells are enriched in cord blood and may protect against cGVHD after cord blood transplantation. Blood. 2016;128(10):1346–1361.
  • Marie-Cardine A, Divay F, Dutot I, et al. Transitional B cells in humans: characterization and insight from B lymphocyte reconstitution after hematopoietic stem cell transplantation. Clin Immunol. 2008;127(1):14–25.
  • Sims GP, Ettinger R, Shirota Y, et al. Identification and characterization of circulating human transitional B cells. Blood. 2005;105(11):4390–4398.
  • Miller RE, Fayen JD, Mohammad SF, et al. Reduced CTLA-4 protein and messenger RNA expression in umbilical cord blood T lymphocytes. Exp Hematol. 2002;30(7):738–744.
  • Elliott SR, Macardle PJ, Roberton DM, et al. Expression of the costimulator molecules, CD80, CD86, CD28, and CD152 on lymphocytes from neonates and young children. Hum Immunol. 1999;60(11):1039–1048.
  • Ueda H, Howson JM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423(6939):506–511.
  • Pérez-García A, De la Cámara R, Román-Gómez J, et al. CTLA-4 polymorphisms and clinical outcome after allogeneic stem cell transplantation from HLA-identical sibling donors. Blood. 2007;110(1):461–467.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.