443
Views
12
CrossRef citations to date
0
Altmetric
Special Report

Curcumin: hopeful treatment of hemophilic arthropathy via inhibition of inflammation and angiogenesis

, , &
Pages 5-11 | Received 18 Jun 2019, Accepted 24 Oct 2019, Published online: 30 Oct 2019

References

  • Roosendaal G, Lafeber FP. Blood-induced joint damage in hemophilia. Semin Thromb Hemost. 2003;29:37–42.
  • Valentino L. Blood‐induced joint disease: the pathophysiology of hemophilic arthropathy. J Thromb Haemost. 2010;8:1895–1902.
  • Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19:20091–20112.
  • Singh S, Aggarwal BB. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). J Biol Chem. 1995;270:24995–25000.
  • Aggarwal S, Ichikawa H, Takada Y, et al. Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IκBα kinase and Akt activation. Mol Pharmacol. 2006;69:195–206.
  • Talero E, Avila-Roman J, Motilva V. Chemoprevention with phytonutrients and microalgae products in chronic inflammation and colon cancer. Curr Pharm Des. 2012;18:3939–3965.
  • J Prud’homme G. Cancer stem cells and novel targets for antitumor strategies. Curr Pharm Des. 2012;18:2838–2849.
  • Fabry G. Ultrastructural changes in synovium and cartilage in experimental hemarthrosis in dogs. Arch Orthop Trauma Surg. 1989;109:21–29.
  • Lee C, Kessler C, Varon D, et al. Synovium in haemophilic arthropathy. Haemophilia. 1998;4:502–505.
  • Wyseure T, Mosnier LO, von Drygalski A. Advances and challenges in hemophilic arthropathy. Semin Hematol. 2016;53:10–19.
  • Hakobyan N, Kazarian T, Jabbar AA, et al. Pathobiology of hemophilic synovitis I: overexpression of mdm2 oncogene. Blood. 2004;104:2060–2064.
  • Wen F-Q, Jabbar AA, Chen Y-X, et al. C-myc proto-oncogene expression in hemophilic synovitis: in vitro studies of the effects of iron and ceramide. Blood. 2002;100:912–916.
  • Melchiorre D, Manetti M, Matucci-Cerinic M. Pathophysiology of hemophilic arthropathy. J Clin Med. 2017;6:63.
  • Acharya SS, Kaplan RN, Macdonald D, et al. Neoangiogenesis contributes to the development of hemophilic synovitis. Blood. 2011;117:2484–2493.
  • Abshire T. Unraveling hemophilic arthropathy. Blood. 2011;117:2302–2303.
  • Sen D, Chapla A, Walter N, et al. Nuclear factor (NF)‐κB and its associated pathways are major molecular regulators of blood‐induced joint damage in a murine model of hemophilia. J Thromb Haemost. 2013;11:293–306.
  • Roosendaal G, Vianen ME, Wenting MJ, et al. Iron deposits and catabolic properties of synovial tissue from patients with haemophilia. J Bone Joint Surg Br. 1998;80(3):540–545.
  • Sambrano GR, Terpstra V, Steinberg D. Independent mechanisms for macrophage binding and macrophage phagocytosis of damaged erythrocytes: evidence of receptor cooperativity. Arterioscler Thromb Vasc Biol. 1997;17:3442–3448.
  • Dinarello CA. Overview of the interleukin-1 family of ligands and receptors. Semin Immunol. 2013;25:389–393.
  • Melchiorre D, Milia AF, Linari S, et al. RANK-RANKL-OPG in hemophilic arthropathy: from clinical and imaging diagnosis to histopathology. J Rheumatol. 2012;39:1678–1686.
  • Wojdasiewicz P, ŁA P, Nauman P, et al. Cytokines in the pathogenesis of hemophilic arthropathy. Cytokine Growth Factor Rev. 2018;39:71–91.
  • Niki Y, Yamada H, Kikuchi T, et al. Membrane-associated IL-1 contributes to chronic synovitis and cartilage destruction in human IL-1α transgenic mice. J Immun. 2004;172:577–584.
  • McNulty AL, Rothfusz NE, Leddy HA, et al. Synovial fluid concentrations and relative potency of interleukin‐1 alpha and beta in cartilage and meniscus degradation. J Orthop Res. 2013;31:1039–1045.
  • Hashizume M, Mihara M. The roles of interleukin-6 in the pathogenesis of rheumatoid arthritis. Arthritis. 2011;2011:765624.
  • Malemud CJ. Matrix metalloproteinases and synovial joint pathology. Prog Mol Biol Transl Sci. 2017;148:305–325.
  • Bendeck MP. Macrophage matrix metalloproteinase-9 regulates angiogenesis in ischemic muscle. Circ Res. 2004;94:138–139.
  • van Vulpen LF, Schutgens RE, Coeleveld K, et al. IL-1β, in contrast to TNFα, is pivotal in blood-induced cartilage damage and is a potential target for therapy. Blood. 2015;126:2239–2246.
  • Narkbunnam N, Sun J, Hu G, et al. IL‐6 receptor antagonist as adjunctive therapy with clotting factor replacement to protect against bleeding‐induced arthropathy in hemophilia. J Thromb Haemost. 2013;11:881–893.
  • Zwerina J, Redlich K, Polzer K, et al. TNF-induced structural joint damage is mediated by IL-1. Proc Natl Acad Sci. 2007;104:11742–11747.
  • Stannus O, Jones G, Cicuttini F, et al. Circulating levels of IL-6 and TNF-α are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthritis Cartilage. 2010;18:1441–1447.
  • Dargaud Y, Simpson H, Chevalier Y, et al. The potential role of synovial thrombomodulin in the pathophysiology of joint bleeds in haemophilia. Haemophilia. 2012;18:818–823.
  • Anastasiou G, Gialeraki A, Merkouri E, et al. Thrombomodulin as a regulator of the anticoagulant pathway: implication in the development of thrombosis. Blood Coagul Fibrinolysis. 2012;23:1–10.
  • Castellino FJ. Human protein C and activated protein C: components of the human anticoagulation system. Trends Cardiovasc Med. 1995;5:55–62.
  • Stearns-Kurosawa DJ, Kurosawa S, Mollica JS, et al. The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex. Proc Natl Acad Sci. 1996;93:10212–10216.
  • Zwerina J, Hayer S, Tohidast‐Akrad M, et al. Single and combined inhibition of tumor necrosis factor, interleukin‐1, and RANKL pathways in tumor necrosis factor–induced arthritis: effects on synovial inflammation, bone erosion, and cartilage destruction. Arthritis Rheum. 2004;50:277–290.
  • Hooiveld MJ, Roosendaal G, Van Den Berg H, et al. Haemoglobin‐derived iron‐dependent hydroxyl radical formation in blood‐induced joint damage: an in vitro study. Rheumatology. 2003;42:784–790.
  • Roosendaal G, Vianen M, Lafeber F, et al. Cartilage damage as a result of hemarthrosis in a human in vitro model. J Rheum. 1997;24:1350–1354.
  • Hitchon CA, El-Gabalawy HS. Oxidation in rheumatoid arthritis. Arthritis Res Ther. 2004;6(6):265.
  • Devasagayam T, Tilak J, Boloor K, et al. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India. 2004;52:794–804.
  • Shakiba Y, Mansouri K, Arshadi D, et al. Corneal neovascularization: molecular events and therapeutic options. Recent Pat Inflamm Allergy Drug Discov. 2009;3:221–231.
  • Mostafaei S, Norooznezhad F, Mohammadi S, et al. Effectiveness of platelet‐rich plasma therapy in wound healing of pilonidal sinus surgery: a comprehensive systematic review and meta‐analysis. Wound Repair Regen. 2017;25:1002–1007.
  • Mohammadi S, Nasiri S, Mohammadi MH, et al. Evaluation of platelet-rich plasma gel potential in acceleration of wound healing duration in patients underwent pilonidal sinus surgery: a randomized controlled parallel clinical trial. Transfus Apher Sci. 2017;56:226–232.
  • Norooznezhad AH, Norooznezhad F. Cannabinoids: possible agents for treatment of psoriasis via suppression of angiogenesis and inflammation. Med Hypotheses. 2017;99:15–18.
  • Norooznezhad AH, Norooznezhad F, Ahmadi K. Next target of tranilast: inhibition of corneal neovascularization. Med Hypotheses. 2014;82:700–702.
  • Norooznezhad AH, Norooznezhad F. How could cannabinoids be effective in multiple evanescent white dot syndrome? A hypothesis. J Rep Pharm Sci. 2016;5:49–52.
  • Keshavarz M, Norooznezhad AH, Mansouri K, et al. Cannabinoid (JWH-133) therapy could be effective for treatment of corneal neovascularization. Iran J Med Hypotheses Deas. 2010;4:3.
  • Norooznezhad AH, Norooznezhad F, Bagheri N. Cannabinoids as treatment for hemophilic arthropathy: hypothesized molecular pathways. J Rep Pharm Sci. 2016;5:89–93.
  • Mirshahi F, Pourtau J, Li H, et al. SDF-1 activity on microvascular endothelial cells: consequences on angiogenesis in in vitro and in vivo models. Thromb Res. 2000;99:587–594.
  • Pulles AE, Mastbergen SC, Schutgens RE, et al. Pathophysiology of hemophilic arthropathy and potential targets for therapy. Pharmacol Res. 2017;115:192–199.
  • Valentino L, Hakobyan N. Histological changes in murine haemophilic synovitis: a quantitative grading system to assess blood‐induced synovitis. Haemophilia. 2006;12:654–662.
  • Acharya SS, MacDonald DD, DiMichele DM, et al. A role for angiogenesis in hemophilic synovitis. Blood. 2004;104:42.
  • Norooznezhad AH. Missing angiogenic factors in hemophilic arthropathy. Exp Rev Hematol. 2017;11:1–2.
  • Jackson J, Higo T, Hunter W, et al. The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis. Inflamm Res. 2006;55:168–175.
  • Moon D-O, Kim M-O, Choi YH, et al. Curcumin attenuates inflammatory response in IL- 1β-induced human synovial fibroblasts and collagen-induced arthritis in mouse model. Int Immunopharmacol. 2010;10:605–610.
  • Kloesch B, Becker T, Dietersdorfer E, et al. Anti-inflammatory and apoptotic effects of the polyphenol curcumin on human fibroblast-like synoviocytes. Int Immunopharmacol. 2013;15:400–405.
  • Kloesch B, Gober L, Loebsch S, et al. In vitro study of a liposomal curcumin formulation (Lipocurc™): toxicity and biological activity in synovial fibroblasts and macrophages. In Vivo. 2016;30:413–419.
  • Soetikno V, Suzuki K, Veeraveedu PT, et al. Molecular understanding of curcumin in diabetic nephropathy. Drug Discov Today. 2013;18:756–763.
  • Z Zheng H, Whitman SA, Wu W, et al. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes. 2011;60:3055–3066.
  • Bae M-K, Kim S-H, Jeong J-W, et al. Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol Rep. 2006;15:1557–1562.
  • Qiu Z, Zhang S, Li A, et al. The role of curcumin in disruption of HIF-1α accumulation to alleviate adipose fibrosis via AMPK-mediated mTOR pathway in high-fat diet fed mice. J Funct Foods. 2017;33:155–165.
  • Chen W-H, Chen Y, Cui G-H. Effects of TNF-alpha and curcumin on the expression of VEGF in Raji and U937 cells and on angiogenesis in ECV304 cells. Chin Med J. 2005;118:2052–2057.
  • Li X, Lu Y, Sun Y, et al. Effect of curcumin on permeability of coronary artery and expression of related proteins in rat coronary atherosclerosis heart disease model. Int J Clin Exp Pathol. 2015;8:7247.
  • Sameermahmood Z, Balasubramanyam M, Saravanan T, et al. Curcumin modulates SDF-1α/CXCR4–induced migration of human retinal endothelial cells (HRECs). Invest Ophthalmol Vis Sci. 2008;49:3305–3311.
  • Saja K, Babu MS, Karunagaran D, et al. Anti-inflammatory effect of curcumin involves downregulation of MMP-9 in blood mononuclear cells. Int Immunopharmacol. 2007;7:1659–1667.
  • Shakibaei M, John T, Schulze-Tanzil G, et al. Suppression of NF-κB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: implications for the treatment of osteoarthritis. Biochem Pharmacol. 2007;73:1434–1445.
  • Cao J, Han Z, Tian L, et al. Curcumin inhibits EMMPRIN and MMP-9 expression through AMPK-MAPK and PKC signaling in PMA induced macrophages. J Transl Med. 2014;12:266.
  • Lee KH, Abas F, Alitheen M, et al. Chemopreventive effects of a curcumin‐like diarylpentanoid [2, 6‐bis (2, 5‐dimethoxybenzylidene) cyclohexanone] in cellular targets of rheumatoid arthritis in vitro. Int J Rheum Dis. 2015;18:616–627.
  • El-Azab F, Hishe H, Moustafa Y, et al. Anti-angiogenic effect of resveratrol or curcumin in Ehrlich ascites carcinoma-bearing mice. Eur J Pharmacol. 2011;652:7–14.
  • Nakagawa Y, Mukai S, Yamada S, et al. Short-term effects of highly-bioavailable curcumin for treating knee osteoarthritis: a randomized, double-blind, placebo-controlled prospective study. J Orthop Sci. 2014;19:933–939.
  • Panahi Y, Rahimnia AR, Sharafi M, et al. Curcuminoid treatment for knee osteoarthritis: a randomized double‐blind placebo‐controlled trial. Phytother Res. 2014;28:1625–1631.
  • Belcaro G, Cesarone MR, Dugall M, et al. Efficacy and safety of Meriva®, a curcumin-phosphatidylcholine complex, during extended administration in osteoarthritis patients. Altern Med Rev. 2010;15:337–344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.