220
Views
7
CrossRef citations to date
0
Altmetric
Review

Heat shock proteins as a new, promising target of multiple myeloma therapy

, &
Pages 117-126 | Received 08 Sep 2019, Accepted 30 Dec 2019, Published online: 23 Jan 2020

References

  • Kyle RA, Rajkumar SV. Multiple myeloma. Blood. 2008;111:2962–2972.
  • Richardson P, Mitsiades C, Schlossman R, et al. The treatment of relapsed and refractory multiple myeloma. Hematology Am Soc Hematol Educ Program. 2007;2007:317–322.
  • Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111:2516–2520.
  • Davenport EL, Moore HE, Dunlop AS, et al. Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells. Blood. 2007;110:2641–2649.
  • Heimberger T, Andrulis M, Riedel S, et al. The heat shock transcription factor 1 as a potential new therapeutic target in multiple myeloma. Br J Haematol. 2013;160:465–476.
  • Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia. 1962;18:571–573.
  • Lackie R, Maciejewski A, Ostapchenko V, et al. The Hsp70 Hsp90 chaperone machinery in neurodegenerative diseases. Front Neurosci. 2017;11:1–23.
  • Park S, Park J, Jeon J, et al. Traditional and novel mechanisms of heat shock protein 90 (HSP90) inhibition in cancer chemotherapy including HSP90 cleavage. Biomol Ther. (Seoul). 2019;27:423–434.
  • Carderwood S. Heat shock proteins and cancer intracellular chaperones or extracellular signalling ligands. Philos Trans R Soc B. 2017;373:1–8.
  • Chatterjee S, Burns T. Targeting heat shock proteins in cancer a promising therapeutic approach. Int J Mol Sci. 2017;18:2–39.
  • Chebotareva N, Bobkova I, Shilov E. Heat shock proteins and kidney disease perspectives of HSP therapy. Cell Stress Chaperones. 2017;22:319–343.
  • Hennessy F, Nicoll W, Zimmermann R, et al. Not all J domains are created equal Implications for the specificity of Hsp40–hsp70 interactions. Protein Sci. 2005;14:1697–1709.
  • Kaźmierczak A, Kiliańska Z. Plejotropowa aktywność białek szoku cieplnego. Postępy Higieny i Medycyny Doświadczalnej. 2009;63:502–521.
  • Kammanadiminti S, Chadee K. Suppression of NF-κB activation by entamoeba histolytica in intestinal epithelial cells is mediated by heat shock protein 27. J Biol Chem. 2006;281:26112–26120.
  • Peffer S, Gonçalves D, Morano K. Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast. J Biol Chem. 2019;294(32):12191–12202.
  • D’Orazi G, Cirone M. Mutant p53 and cellular stress pathways a criminal alliance that promotes cancer progression. Cancers (Basel). 2019;11:1–17.
  • Shao J, Hana B, Caoa P, et al. HSF1 phosphorylation by cyclosporin A confers hyperthermia sensitivity through suppression of HSP expression. Bioch Biophys Acta Gene Regul Mech. 2019;1862(8):846–857.
  • Dai C, Whitesell L, Rogers A, et al. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell. 2007;130:1–22.
  • Li Q, Martinez J. Loss of HSF1 results in defective radiation-induced G (2) arrest and DNA repair. Radiat Res. 2011;176:17–24.
  • Toma-Jonik A, Vydra N, Janus P, et al. Interplay between HSF1 and p53 signaling pathways in cancer initiation and progression: non-oncogene and oncogene addiction. Cellulat Oncol. 2019;42(5):579–589.
  • Wawrzynowa B, Zylicz A, Zylicz M. Chaperoning the guardian of the genome. The two-faced role of molecular chaperones in p53 tumor suppressor action. Biochim Biophys Acta Rev Cancer. 2018;1869:161–174.
  • Friedrich K, Giese K, Buan N, et al. Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. J Biol Chem. 2004;279:1080–1089.
  • Sheng B, Qi C, Liu B, et al. Increased HSP27 correlates with malignant biological behavior of non-small cell lung cancer and predicts patient’s survival. Sci Rep. 2017;7:1–12.
  • Konda J, Olivero M, Musiani D, et al. Heat‐shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF. Mol Oncol. 2017;11:599–611.
  • Concannon C, Gorman A, Samali A. On the role of Hsp27 in regulating apoptosis. Apoptosis. 2003;8:61–70.
  • Mitra A, Shevde L, Samant R. Multi-faceted role of HSP40 in cancer. Clin Exp Metastasis. 2009;26:559–567.
  • Habich C, Baumgart K, Kolb H, et al. The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol. 2002;168:569–576.
  • Cappello F, de Macario E, Marasà L, et al. Hsp60 expression, new locations, functions, and perspectives for cancer diagnosis and therapy. Cancer Biol Ther. 2008;7:801–809.
  • Mayer M, Bukau B. Hsp70 chaperones cellular functions and molecular mechanism. Cell Mol Life Sci. 2005;62:670–684.
  • Maehara Y, Oki E, Abe T, et al. Overexpression of the heat shock protein HSP70 family and p53 protein and prognosis for patients with gastric cancer. Oncology. 2000;58:144–151.
  • Genest O, Wickner S, Doyle S. Hsp90 and Hsp70 chaperones collaborators in protein remodeling. J Biol Chem. 2018;294:2109–2120.
  • Sreedhar A, Kalmar E, Csermelya P, et al. Hsp90 isoforms functions, expression and clinical importance. FEBS Lett. 2004;562:11–15.
  • Qin L, Huang H, Huang J, et al. Biological characteristics of heat shock protein 90 in human liver cancer cells. Am J Transl Res. 2019;11:2477–2483.
  • Gimenez A, Salcedo J. Heat shock proteins as targets in oncology. Clin Transl Oncol. 2010;12:166–173.
  • Chatterjee M, Jain S, Stühmer T, et al. STAT3 and MAPK signaling maintain overexpression of heat shock proteins 90alpha and beta in multiple myeloma cells, which critically contribute to tumor‐cell survival. Blood. 2007;109:720–728.
  • Mitsiades CS, Mitsiades NS, McMullan CJ, et al. Antimyeloma activity of heat shock protein‐90 inhibition. Blood. 2006;107:1092–1100.
  • Okawa Y, Hideshima T, Steed P, et al. SNX‐2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK. Blood. 2009;113:846–855.
  • Sydor JR, Normant E, Pien CS, et al. Development of 17‐allylamino‐17‐demethoxygeldanamycin hydroquinone hydrochloride (IPI‐504), an anti‐cancer agent directed against Hsp90. Proc Natl Acad Sci U S A. 2006;103:17408–17413.
  • Usmani SZ, Bona RD, Chiosis G, et al. The anti-myeloma activity of a novel purine scaffold HSP90 inhibitor PU-H71 is via inhibition of both HSP90A and HSP90B1. J Hematol Oncol. 2010;26(3):40.
  • Ishii T, Seike T, Nakashima T, et al. Anti-tumor activity against multiple myeloma by combination of KW-2478, an Hsp90 inhibitor, with bortezomib. Blood Cancer J. 2012;2:e68.
  • Lamottke B, Kaiser M, Mieth M, et al. The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases. Eur J Haematol. 2012;88:406–415.
  • Chatterjee M, Andrulis M, Stühmer T, et al. The PI3K/Akt signaling pathway regulates the expression of Hsp70, which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma. Haematologica. 2013;98:1132–1141.
  • Bustany S, Cahu J, Descamps G, et al. Heat shock factor 1 is a potent therapeutic target for enhancing the efficacy of treatments for multiple myeloma with adverse prognosis. J Hematol Oncol. 2015;8:40.
  • Bailey CK, Budina-Kolomets A, Murphy ME, et al. Efficacy of the HSP70 inhibitor PET-16 in multiple myeloma. Cancer Biol Ther. 2015;16:1422–1426.
  • Suzuki R, Kikuchi S, Harada T, et al. Combination of a selective HSP90α/β inhibitor and a RAS-RAF-MEK-ERK signaling pathway inhibitor triggers synergistic cytotoxicity in multiple myeloma cells. PLoS One. 2015;10:e0143847.
  • Duus J, Bahar HI, Venkataraman G, et al. Analysis of expression of heat shock protein‐90 (HSP90) and the effects of HSP90 inhibitor (17‐AAG) in multiple myeloma. Leukaemia Lymphoma. 2006;47:1369–1378.
  • Whitesell L. Lindquist SL HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5:761–772.
  • Roe SM, Prodromou C, O’Brien R, et al. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem. 1999;42:260–266.
  • Goetz MP, Toft D, Reid J, et al. Phase I trial of 17‐allylamino‐17‐demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol. 2005;23:1078–1087.
  • Grem JL, Morrison G, Guo XD, et al. Phase I and pharmacologic study of 17‐(allylamino)‐17‐demethoxygeldanamycin in adult patients with solid tumors. J Clin Oncol. 2005;23:1885–1893.
  • Ramanathan RK, Egorin MJ, Eiseman JL, et al. Phase I and pharmacodynamic study of 17‐(allylamino)‐17‐demethoxygeldanamycin in adult patients with refractory advanced cancers. Clin Cancer Res. 2007;13:1769–1774.
  • Richardson PG, Mitsiades CS, Laubach JP, et al. Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Br J Haematol. 2011;152:367–379.
  • Cavenagh J, Oakervee H, Baetiong-Caguioa P, et al. Phase I/II study of KW-2478, an Hsp90 inhibitor, in combination with bortezomib in patients with relapsed/refractory multiple myeloma. Br J Cancer. 2017;117:1295–1302.
  • Seggewiss-Bernhardt R, Bargou RC, Goh YT, et al. Phase 1/1B trial of the heat shock protein 90 inhibitor NVP-AUY922 as monotherapy or in combination with bortezomib in patients with relapsed or refractory multiple myeloma. Cancer. 2015;121:2185–2192.
  • Reddy N, Voorhees PM, Houk BE, et al. Phase I trial of the HSP90 inhibitor PF-04929113 (SNX5422) in adult patients with recurrent, refractory hematologic malignancies. Clin Lymphoma Myeloma Leuk. 2013;13:385–391.
  • Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373:621–631.
  • Dimopoulos MA, Dytfeld D, Grosicki S, et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N Engl J Med. 2018;379:1811–1822.
  • Mateos MV, Dimopoulos MA, Cavo M, et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N Engl J Med. 2018;378:518–528.
  • Palumbo A, Chanan-Khan A, Weisel K, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375:754–766.
  • Grosicki S, Barchnicka A. Elotuzumab: a novel immune-stimulating therapy to treat multiple myeloma. Expert Rev Hematol. 2016;9:621–628.
  • Mateos M-V, Nahi H, Legiec W, et al. Randomized, open-label, non-inferiority, phase 3 study of subcutaneous (SC) versus intravenous (IV) daratumumab (DARA) administration in patients with relapsed or refractory multiple myeloma: COLUMBA. J Clin Oncol. 2019 May 20;37(15_suppl): 8005-8005.
  • McMillin DW, Negri J, Delmore J, et al. Activity of new heat shock protein 90 (hsp90) inhibitor NVP‐AUY922 against myeloma cells sensitive and resistant to conventional agents. Blood (ASH Annual Meeting Abstracts). 2007;110:1587.
  • Stuhmer T, Zöllinger A, Siegmund D, et al. Signalling profile and antitumour activity of the novel Hsp90 inhibitor NVP‐AUY922 in multiple myeloma. Leukemia. 2008;22:1604–1612.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.