411
Views
5
CrossRef citations to date
0
Altmetric
Review

A review of current induction strategies and emerging prognostic factors in the management of children and adolescents with acute lymphoblastic leukemia

, , , , , , & show all
Pages 755-769 | Received 16 Dec 2019, Accepted 14 May 2020, Published online: 01 Jun 2020

References

  • Gaynon PS, Angiolillo AL, Carroll WL, et al. Long-term results of the children’s cancer group studies for childhood acute lymphoblastic leukemia 1983–2002: a children’s oncology group report. Leukemia. 2010;24(2):285–297.
  • Cooper LS, Brown PA. Treatment of pediatric acute lymphoblastic leukemia. Pediatr Clin North Am. 2015;62(1):61–73.
  • Pui CH, Yang JJ, Bhakta N, et al. Global efforts toward the cure of childhood acute lymphoblastic leukemia. Lancet Child Adolesc Health. 2018;2(6):440–454.
  • Kato M, Manabe A. Treatment and biology of pediatric acute lymphoblastic leukemia. Pediatr Int. 2018;60(1):4–12.
  • Moorman AV, Robinson H, Schwab C, et al. Risk-directed treatment intensification significantly reduces the risk of relapse among children and adolescents with acute lymphoblastic leukemia and intrachromosomal amplification of chromosome 21: a comparison of the MRC ALL97/99 and UKALL2003 trials. J Clin Oncol. 2013;31(27):3389–3396.
  • Conter V, Bartram CR, Valsecchi MG, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP BFM ALL 2000 study. Blood. 2010;115(16):3206–3214.
  • Schrappe M, Valsecchi MG, Bartram CR, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood. 2011;118(8):2077–2084.
  • Conter V, Valsecchi MG, Buldini B, et al. Early T-cell precursor acute lymphoblastic leukemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis. Lancet Haematol. 2016;3(2):2352–3026.
  • Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–156.
  • Borowitz MJ, Devidas M, Hunger SP, et al. Children’s oncology group. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a children’s oncology group study. Blood. 2008;111(15):5477–5485.
  • Biondi A, Gandemer V, De Lorenzo P, et al. Imatinib treatment of paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (EsPhALL2010): a prospective, intergroup, open-label, single-arm clinical trial. Lancet Haematol. 2018;5(12):e641–e652.
  • Pui CH, Pei D, Raimondi SC, et al. Clinical impact of minimal residual disease in children with different subtypes of acute lymphoblastic leukemia treated with response-adapted therapy. Leukemia. 2017;31:333–339.
  • Pui CH, Pei D, Coustan-Smith E, et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukemia: a prospective study. Lancet Oncol. 2015;16(4):465–474.
  • Vora A, Goulden N, Mitchell C, et al. Improved outcome for children and young adults with T-cell acute lymphoblastic leukemia (ALL): results of the United Kingdom Medical Research Council (MRC) trial UKALL 2003. Blood. 2008;Abs. 112:908. ASH annual Meeting.
  • Vora A, Goulden N, Wade R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomized controlled trial. Lancet Oncol. 2013;14:119–209.
  • Veerman AJ, Hahlen K, Kamps WA, et al. High cure rate with a moderately intensive treatment regimen in non-high-risk childhood acute lymphoblastic leukemia. Results of protocol ALL VI from the Dutch childhood leukemia study group. J Clin Oncol. 1996;14(3):911–918.
  • Maloney KW, Devidas M, Wang C, et al. Outcome of children with standard-risk B-cell acute lymphoblastic leukemia: results of children’s oncology group trial AALL0331. J Clin Oncol. 2020;38(6):602–612.
  • Schrappe M, Hunger SP, Pui CH, et al. Outcomes after induction failure in childhood acute lymphoblastic leukemia. N Engl J Med. 2012;366(15):1371–1381.
  • Bhutani M, Kumar L, Vora A, et al. Randomized study comparing 4ʹ-epidoxorubicin (epirubicin) versus doxorubicin as part of induction treatment in adult acute lymphoblastic leukemia. Am J Hematol. 2002;71(4):241–247.
  • Leblanc T, Auclerc MF, Cornu G, et al. Randomized study with idarubicine (IDR) versus daunorubicine (DNR) for induction treatment in intermediate risk acute lymphoblastic leukemia in childhood. Proc Am Assoc Cancer Res. 1996;37:171.
  • Yetgiu S, Obek NY, Masera G, et al. For Childhood Acute Lymphoblastic leukemia Collaborative Group (CALLCG). Beneficial and harmful effects of anthracyclines in the treatment of childhood acute lymphoblastic leukemia: a systemic review and meta-analysis. Br J Haematol. 2009;145(3):776–788.
  • Conter V, Aricò M, Basso G, et al. Long-term results of the Association of Pediatric Hematology Oncology (AIEOP) studies 82, 87, 88, 91 and 95 for childhood acute lymphoblastic leukemia. Leukemia. 2010;24:255–256.
  • Vora A, Goulden N, Mitchell C, et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukemia (UKALL 2003): a randomized controlled trial. Lancet Oncol. 2014;15(8):809–818.
  • Jeha S, Pui CH. Risk-adapted treatment of pediatric acute lymphoblastic leukemia. Haematol Oncol Clin. 2009;23:973–990.
  • Groninger E, Meeuwsen-de Boer T, Koopmans P, et al. Pharmacokinetics of vincristine monotherapy in childhood acute lymphoblastic leukemia. Eur J Cancer. 2005;41(81):98–103.
  • Heffner L. A new formulation of vincristine for acute lymphoblastic leukemia. Clin Adv Hematol Oncol. 2011;9(4):314–316.
  • Lavoie Smith EM, Li L, Chiang C, et al. Patterns and severity of vincristine-induced peripheral neuropathy in children with acute lymphoblastic leukemia. J Peripher Nerv Syst. 2015;20:37–46.
  • Lehtinen SS, Huuskonen UE, Harila-Sahari AH, et al. Motor nervous system impairment persists in long-term survivors of childhood acute lymphoblastic leukemia. Cancer. 2002;94:2466–2473.
  • Sajdyk TJ, Boyle FA, Foran KS, et al. Obesity as a potential risk factor for vincristine-induced peripheral neuropathy. J Pediatr Hematol Oncol. 2019 Oct 18. [Epub ahead of print]. DOI: 10.1097/MPH.0000000000001604.
  • Ringler I, West K, Dulin WE, et al. Biological potencies of chemically modified adrenocorticosteroids in rat and man. Metabolism. 1964;13:37–44.
  • Kaspers GJ, Veerman AJ, Popp-Snijders C, et al. Comparison of antileukemic activity in vitro of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia. Med Pediatr Oncol. 1996;27:114–121.
  • Balis FM, Lester CM, Chrousos GP, et al. Differences in cerebrospinal fluid penetration of corticosteroids: possible relationship to the prevention of meningeal leukemia. J Clin Oncol. 1987;5(2):2012–2017.
  • Jones B, Freeman AI, Shuster JJ, et al. Lower incidence of meningeal leukemia when prednisone is replaced by dexamethasone in the treatment of acute lymphoblastic leukemia. Med Pediatr Oncol. 1991;19(4):269–275.
  • Bostrom BC, Sensel MR, Sather HN, et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the children’s cancer group. Blood. 2003;101(10):3809–3816.
  • Bartram J, Wade R, Vora A, et al. Excellent outcome of minimal residual disease-defined low-risk patients is sustained with more than 10 years follow-up: results of UK pediatric acute lymphoblastic leukemia trials 1997-2003. Arch Dis Child. 2016;101:449–454.
  • DNofia AM, Seif AE, Devidas M, et al. Cost comparison by treatment arm and center-level variations in cost and inpatient days on the phase III high-risk B acute lymphoblastic leukemia trial AALL0232. Cancer Med. 2018;7(1):3–12.
  • Moricke A, Zimmermann M, Valsecchi MG, et al. Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000. Blood. 2016;127(17):2101–2112.
  • Hofmans M, Suciu S, Ferster A, et al. Results of successive EORTC-CLG 58 881 and 58 951 trials in pediatric T-cell acute lymphoblastic leukemia (ALL). Br J Haematol. 2019;186:741–753.
  • Rizzari C, Conter V, Stary J, et al. Optimizing asparaginase therapy for acute lymphoblastic leukemia. Curr Opin Oncol. 2013 Mar 3;(Suppl1):S 1–9. DOI: 10.1097/CCO.0b013e32835d7d85.
  • Asselin BL, Whitin JC, Coppola DJ, et al. Comparative pharmacokinetic studies of three asparaginase preparation. J Clin Oncol. 1993;11:1780–1786.
  • Vieira Pinheiro JP, Ahlke E, Nowak-Gottl U, et al. Pharmacokinetic dose adjustment of Erwinia asparaginase in protocol II of the pediatric ALL/NHL-BFM treatment protocols. Br J Haematol. 1999;104:313–320.
  • Klug Albertsen B, Schroder H, Jakobsen P, et al. Monitoring Erwinia asparaginase therapy in childhood ALL in the Nordic countries. Br J Clin Pharmacol. 2001;52:433–437.
  • Moghrabi A, Levy DE, Asselin B, et al. Results of the Dana-Farber cancer institute ALL consortium protocol 95-01 for children with acute lymphoblastic leukemia. Blood. 2007;109:896–904.
  • Duval M, Suciu S, Ferster A, et al. Comparison of Escherichia coli asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a randomized European organisation for research and treatment of cancer-children’s leukemia group phase 3 trial. Blood. 2001;2(99):2734–2739.
  • Avramis VI, Sencer S, Periclou AP, et al. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a children’s cancer group study. Blood. 2002;99:1986–1994.
  • Zalewska-Szewczyk B, Andrzejewski W, Mlynarski W, et al. The antiasparagines antibodies correlate with L-asparagines activity and may affect clinical outcome of childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2007;48:931–936.
  • Panosyan EH, Seibel NL, Martin-Aragon S, et al. Asparaginase antibody and asparaginase activity in children with higher-risk acute lymphoblastic leukemia: children’s Cancer Group Study CCG-1961. J Pediatr Hematol Oncol. 2004;26:217–226.
  • Burke MJ, Rheingold SR. Differentiating hypersensitivity versus infusion-related reactions in pediatric patients receiving intravenous asparaginase therapy for acute lymphoblastic leukemia. Leuk Lymphoma. 2017;58(3):540–551.
  • Vrooman LM, Supko JG, Neuberg DS, et al. Erwinia asparaginase after allergy to E. coli asparaginase in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2010;54:199–205.
  • Basso G, Veltroni M, Valsecchi MG, et al. Risk of relapse of childhood acute lymphoblastic leukemia by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27(31):5168–5174.
  • Campana D, Pui CH. Minimal residual disease-guided therapy in childhood acute lymphoblastic leukemia. Blood. 2017;129(14):1913–1918.
  • Mullighan CG, Jeha S, Pei D, et al. Outcome of children with hypodiploid ALL treated with risk-directed therapy based on MRD levels. Blood. 2015;126:2896–2899.
  • Yamaji K, Okamoto T, Yokota S, et al. Minimal residual disease-based augmented therapy in childhood acute lymphoblastic leukemia: a report from the Japanese childhood cancer and leukemia study group. Pediatr Blood Cancer. 2010;55:1287–1295.
  • Coustan-Smith E, Song G, Clark C, et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2011;117(23):6267–6276.
  • Pui CH, Campana D, Pei D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl Med. 2009;360(26):2730–2741.
  • Roberts KG, Pei D, Campana D, et al. Outcomes of children with BCR-ABL1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol. 2014;32(27):3012–3020.
  • Evans AE, Gilbert ES, Zandstra R. The increasing incidence of central nervous system leukemia in children (Children’s Cancer Study Group A). Cancer. 1970;26:404.
  • Matloub Y, Lindemulder S, Gaynon PS, et al. Intrathecal triple therapy decreases central nervous system relapse but fails to improve event-free survival when compared with intrathecal methotrexate: results of the Children’s Cancer group (CCG) 1952 study for standard-risk acute lymphoblastic leukemia, reported by the Children’s Oncology Group. Blood. 2006;108(4):1165–1173.
  • Veerman AJ, Kamps WA, van den Berg H, et al. Dexamethasone-based therapy for childhood acute lymphoblastic leukemia; results of the prospective Dutch Childhood Oncology Group (DCOG) protocol ALL-9 (1997-2004). Lancet Oncol. 2009;10:957–966.
  • Jeha S, Pei D, Choi J, et al. Improved CNS control of childhood acute lymphoblastic leukemia without cranial irradiation: St Jude Total therapy Study 16. J Clin Oncol. 2019;37(35):3377–3391.
  • Fiend BD, Shiller GJ. Closing the gap: novel therapies in treating acute lymphoblastic leukemia in adolescents and young adults. Blood Rev. 2018;32(2):122–129.
  • Siegel SE, Stock W, Johnson RH, et al. Pediatric-inspired treatment regimens for adolescents and young adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: a review of advantages and challenges. JAMA Oncol. 2018;4(5):725–734.
  • Larson RA, Dodge RK, Burns CP, et al. A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: cancer and leukemia group B study 8811. Blood. 1995;85(8):2025–2037.
  • Stock W, Johnson JL, Stone RM, et al. Dose intensification of daunorubicin and cytarabine during treatment of adult acute lymphoblastic leukemia: results of Cancer and Leukemia Group B Study 19802. Cancer. 2013;119(1):90–98.
  • Kantarjian HM, O’Brien S, Smith TL, et al. Results of treatment with hyper-CVAD, a dose-intensive regimen, in adult acute lymphocytic leukemia. J Clin Oncol. 2000;18(3):547–561.
  • Pulte D, Gondos A, Brenner H. Trends in 5- and 10-year survival after diagnosis with childhood hematologic malignancies in the United States, 1990–2004. J Natl Cancer Inst. 2008;100(18):1301–1309.
  • Smith MA, Seibel NL, Altekruse SF, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol. 2010;28(15):2625–2634.
  • Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005–1015.
  • Harrison CJ. Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br J Haematol. 2009;144(2):147–156.
  • Harrison CJ. Blood Spotlight on iAMP21 acute lymphoblastic leukemia (ALL), a high-risk pediatric disease. Blood. 2015;125:1383–1386.
  • Soulier J, Trakhtenbrot L, Najfeld V, et al. Amplification of band q22 of chromosome 21, including AML1, in older children with acute lymphoblastic leukemia: an emerging molecular cytogenetic subgroup. Leukemia. 2003;17(8):1679–1682.
  • Harrison CJ, Moorman AV, Schwab C, et al. Ponte di Legno international workshop in childhood acute lymphoblastic leukemia. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia. 2014;28(5):1015–1021.
  • De Angelo DJ. The treatment of adolescents and young adults with acute lymphoblastic leukemia. Am Soc Hematol Edu Book. 2005;2005:123–130.
  • Asnafi V, Beldjord K, Libura M, et al. Age-related phenotypic and oncogenic differences in T-cell acute lymphoblastic leukemias may reflect thymic atrophy. Blood. 2004;104(13):4173–4180.
  • Huguet F, Leguay T, Raffoux E, et al. Pediatric-inspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: the GRAALL-2003 study. J Clin Oncol. 2009;27(6):911–918.
  • De Bont JM, Holt B, Dekker AW, et al. Significance difference in outcome for adolescents with acute lymphoblastic leukemia treated on pediatric versus adult protocols in the Netherlands. Leukemia. 2004;18(12):2032–2035.
  • Stock W, La M, Sanford B, et al. What determines the outcomes for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of children’s cancer group and cancer and leukemia group B studies. Blood. 2008;112(5):1646–1654.
  • Testi AM, Valsecchi MG, Conter V, et al. Differences in outcome of adolescents with acute lymphoblastic leukemia enrolled in pediatric (AIEOP) and adult (GIMEMA) protocols. Proceedings of American Society of Hematology 46th annual meeting, San Diego, California, Dec 4-7 2004. Blood. 2004;104(11):abstract 1954.
  • Ribera JM, Oriol A, Sanz MA, et al. Comparison of the results of the treatment of adolescents and young adults with standard-risk acute lymphoblastic leukemia with the Programa Español de Tratamiento en Hematología pediatric-based protocol ALL-96. J Clin Oncol. 2008;26(11):1843–1849.
  • Toft N, Birgens H, Abrahamsson J, et al. Results of NOPHO ALL2008 treatment for patients aged 1-45 years with acute lymphoblastic leukemia. Leukemia. 2018;32(3):606–615.
  • Boissel N, Auclerc H, Lherieter V, et al. Should adolescents with acute lymphoblastic leukemia be treated as old children or young adults? Comparison of comparison of the French FRALLE-93 and LALA-94 trials. J Clin Oncol. 2003;21(5):774–780.
  • Burke MJ, Gossai N, Wagner JE, et al. Survival differences between adolescents/young adults and children with B precursor acute lymphoblastic leukemia after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2013;19(1):138–142.
  • Barry E, De Angelo DJ, Neuberg D, et al. Favorable outcome for adolescents with acute lymphoblastic leukemia treated on Dana- Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium Protocols. J Clin Oncol. 2007;25(7):813–819.
  • Huguet F, Chevret S, Leguay T, et al. Intensified therapy of acute lymphoblastic leukemia in adults: report of the randomized GRAALL-2005 clinical trial. J Clin Oncol. 2018;36(24):2514–2523.
  • Rytting ME, Jabbour EJ, Jorgensen JL, et al. Final results of a single institution experience with a pediatric-based regimen, the augmented Berlin-Frankfurt-Munster, in adolescents and young adults with acute lymphoblastic leukemia, and comparison to the hyper-CVAD regimen. Am J Hematol. 2016;91:819–823.
  • Rijneveld AW, van der Holt B, Daenen SMGJ, et al. Intensified chemotherapy inspired by a pediatric regimen combined with allogeneic transplantation in adult patients with acute lymphoblastic leukemia up to the age of 40. Leukemia. 2011;25(11):1697–1703.
  • Ramanujachar R, Richards S, Hann I, et al. Adolescents with acute lymphoblastic leukemia: outcome on UK national pediatric (ALL97) and adult (UKALLXII/E2993) trials. Pediatr Blood Cancer. 2007;48(3):254–261.
  • Rytting ME, Thomas DA, O’Brien SM, et al. Augmented Berlin-Frankfurt-Münster Therapy in Adolescents and Young Adults (AYA) with Acute Lymphoblastic Leukemia (ALL). Cancer. 2014;120(23):3660–3668.
  • Stock W, Douer D, De Angelo DJ, et al. Prevention and management of asparaginase/pegasparaginase-associated toxicities in adults and older adolescents: recommendations of an expert panel. Leuk Lymphoma. 2011;52(12):2237–2253.
  • Mitchell L, Hoogendoorn H, Giles AR, et al. Increased endogenous thrombin generation in children with acute lymphoblastic leukemia: risk of thrombotic complications in L Asparaginase-induced antithrombin III deficiency. Blood. 1994;83(2):386–391.
  • Payne JH, Vora AJ. Thrombosis in acute lymphoblastic leukemia. Br J Haematol. 2007;138(4):430–445.
  • Douer D, Aldoss I, Lunning MA, et al. Pharmacokinetics based integration of multiple doses intravenous pegaspargase in a pediatric regimen for adults with newly diagnosed acute lymphoblastic leukemia. J Clin Oncol. 2014;32(9):905–911.
  • Plourde PV, Jeha S, Hijiva N, et al. safety profile of asparaginase Erwinia chrysanthemi in a large compassionate use trial. Pediatr Blood Cancer. 2014;61(7):1232–1238.
  • Stock W, Luger SM, Advani AS, et al. Favorable outcomes for older adolescents and young adults (AYA) with acute lymphoblastic leukemia (ALL): early results of US Intergroup trial C10403. proccedings of American Society of Hematology 56th Annual Meeting San Francisco California Dec 6-9. Blood. 2014;124(21):abstract 796.
  • Bassan R, Spinelli O, Oldani E, et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood. 2009;113(18):4153–4162.
  • Nagafuji K, Mayamoto T, Eto T, et al. Monitoring of minimal residual disease (MRD) is useful to predict prognosis of adult patients with Ph-negative ALL: results of a prospective study (ALL MRD 2002 Study). J Hematol Oncol. 2013;6(6):14.
  • Faham M, Zheng J, Moorhead M, et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2012;120(26):5173–5180.
  • Malnassy G, Carlton V, Moorhead M, et al. Comparison of next-generation sequencing and ASO-PCR methods for MRD detection in acute lymphoblastic leukemia. Haematologica. 2013;98:224–225.
  • Gökbuget N, Kneba M, Raff T, et al. German Multicenter Study Group for Adult Acute Lymphoblastic Leukemia. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 2012;120(9):1868–1876.
  • Aricò M, Valsecchi MG, Camitta B, et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med. 2000;342(14):998–1006.
  • Aricò M, Schrappe M, Hunger SP, et al. Clinical outcome of children with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol. 2010;28:4755–4761.
  • Bleckmann K, Schrappe M. Advances in therapy for Philadelphia-positive acute lymphoblastic leukemia in childhood and adolescence. Br J Haematol. 2016;172:855–869.
  • Biondi A, Gunnar C, De Lorenzo P, et al. Long-term follow up of pediatric Philadelphia positive acute lymphoblastic leukemia treated with EsPhALL2004 study: high white blood cell count at diagnosis is the strongest prognostic factor. Haematologica. 2019;104(1):e13–e16.
  • Schultz KR, Carroll A, Heerema NA, et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: children’s Oncology group Study AALL0031. Leukemia. 2014;28:1467–1471.
  • Jeha S, Coustan-Smith E, Pei D, et al. Impact of tyrosine kinase inhibitors on minimal residual disease and outcome in childhood Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer. 2014;120(10):1514–1519.
  • Slayton WB, Schultz KR, Kairalla JA, et al. Dasatinib plus intensive chemotherapy in children, adolescents, and young adults with Philadelphia chromosome-positive acute lymphoblastic leukemia: results of Children’s Oncology Group Trial ALL0622. J Clin Oncol. 2018;36:2306–2314.
  • Jabbour E, Kantarjian H, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: a single-centre, phase2 study. Lancet Oncol. 2015;16:1547–1555.
  • Chiaretti S, Bassan R, Vitale A et al. A Dasatinib-Blinatumomab combination for the front-line treatment of adult Ph+ ALL patients. Updated results of the GIMEMA LAL 2116 D-ALBA trial; on behalf of GIMEMA Acute Leukemia Working Party. Proceedings of American Society of Hematology 61st Annual Meeting Orlando, Florida Dec 7-10, 2019 (Abstract 740).
  • Mulligan CG, Su X, Zhang J, et al. Children’s Oncology Group. Deletion of IKZ1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360:470–480.
  • Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10:125–134.
  • Chiaretti S, Li X, Gentleman R, et al. Gene expression profiles of B-lineage adult acute lymphocytic leukemia reveal genetic patterns that identify lineage derivation and distinct mechanisms of transformation. Clin Cancer Res. 2005;11:7209–7219.
  • Roberts KG, Gu Z, Payne-Turner D, et al. High frequency and poor outcome of Philadelphia chromosome-like acute lymphoblastic leukemia in adults. J Clin Oncol. 2017;35:394–401.
  • Jain N, Roberts KG, Jabbour E, et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood. 2017;129:572–581.
  • Herold T, Schneider S, Metzeler KH, et al. Adults with Philadelphia chromosome-like acute lymphoblastic leukemia frequently have IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis. Haematologica. 2017;102:130–138.
  • Kobayashi K, Miyagawa N, Mitsui K, et al. TKI dasatinib monotherapy for a patient with Ph-like ALL bearing ATF1P/PDGFRB translocation. Pediatr Blood Cancer. 2015;62(6):1058–1060.
  • Jain N, Jabbour EJ, McKay PZ, et al. Ruxolitinib or dasatinib in combination with chemotherapy for patients with relapsed/refractory Philadelphia (Ph)-like acute lymphoblastic leukemia: a phase I-II trial. Blood. 2017;130(Suppl 1):1322.
  • Heatley SL, Sadras T, Kok CH, et al. High prevalence of relapse in children with Philadelphia-like acute lymphoblastic leukemia despite risk-adapted treatment. Haematologica. 2017;102:e490–493.
  • Maloney KW, Wood B, Whitlock JA, et al. Event free (EFS) and overall survival (OS) for children with Down syndrome (DS) and B-lymphoblastic leukemia in Children’s Oncology Group (COG) trials AALL0232 and AALL0331. Pediatr Blood Cancer. 2014;61(S1):S4. abstract #4009.
  • Buitenkamp TD, Izraeli S, Zimmermann M, et al. Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group. Blood. 2014;123(1):70–77.
  • Athale UH, Puligandla M, Stevenson KE, et al. Outcome of children and adolescents with Down syndrome treated on Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium protocols 00–001 and 05-001. Pediatr Blood Cancer. 2018;65(10):e27256.
  • Whitlock JA, Sather HN, Gaynon P, et al. Clinical characteristics and outcome of children with Down syndrome and acute lymphoblastic leukemia: a children’s cancer group study. Blood. 2005;106:4043–4049.
  • Laetsch TW, Maude SL, Grupp SA, et al. CTL019 therapy appears safe and effective in pediatric patients with Down Syndrome with relapsed/refractory (r/r) acute lymphoblastic leukemia. Blood. 2017;130(Suppl. 1):1280.
  • Annesley CE, Brown P. Novel agents for the treatment of childhood acute leukemia. Ther Adv Hematol. 2015;6(2):61–79.
  • Tasian SK, Doral MY, Borowitz MJ, et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood. 2012;120(4):833–842.
  • Pieters R, Schrappe M, De Lorenzo P, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukemia (Interfant-99): an observational study and a multicentric randomized trial. Lancet. 2007;370(9583):240–250.
  • Brown P, Pieters R, Biondi A. How I treat infant leukemia. Blood. 2019;133(3):205–214.
  • Andersson AK, Ma J, Wang J, et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet. 2015;47(4):330–337.
  • Brown AP, Kauralla J, Hilden JM, et al. FLT3 inhibitor correlative laboratory assays impact outcomes in KMT2A-rearranged infant acute lymphoblastic leukemia (ALL) patients treated with lestaurtinib: AALL0631, a children’s oncology group study. Blood. 2019;134(suppl. 1):1293.
  • Kotecha RS, Gottardo NG, Kees UR, et al. The evolution of clinical trials for infant acute lymphoblastic leukemia. Blood Cancer J. 2014;4:e200.
  • Peters R, De Lorenzo P, Ancliffe P, et al. Outcome of infants younger than 1 year with acute lymphoblastic leukemia treated with the Interfant 06 protocol: results from an international phase 3 randomized study. J Clin Oncol. 2019;37(25):2246–2256.
  • Brown P. Treatment of infant leukemia: challenges and promise. Hematology AM Soc Hematol Educ Program. 2013;2013:596–600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.