331
Views
4
CrossRef citations to date
0
Altmetric
Review

Bispecific antibodies in acute lymphoblastic leukemia therapy

ORCID Icon, , ORCID Icon, &
Pages 1211-1233 | Received 21 Jun 2020, Accepted 29 Sep 2020, Published online: 04 Nov 2020

References

  • Paul S, Kantarjian H, Jabbour EJ. Adult acute lymphoblastic leukemia. Mayo Clin Proc. 2016;91(11):1645–1666.
  • Pulte D, Redaniel MT, Jansen L, et al. Recent trends in survival of adult patients with acute leukemia: overall improvements, but persistent and partly increasing disparity in survival of patients from minority groups. Haematologica. 2013;98(2):222–229.
  • Pui C-H, Evans WE. A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin Hematol. 2013;50(3):185–196.
  • Hunger SP, Mullighan CG, Longo DL. Acute Lymphoblastic Leukemia in Children. N Engl J Med. 2015;373(16):1541–1552.
  • Trama A, Botta L, Foschi R, et al. Survival of European adolescents and young adults diagnosed with cancer in 2000–07: population-based data from EUROCARE-5. Lancet Oncol. 2016;17(7):896–906.
  • Carobolante F, Chiaretti S, Skert C, et al. Practical guidance for the management of acute lymphoblastic leukemia in the adolescent and young adult population. Ther Adv Hematol. 2020;11(2040620720903531).
  • Fielding AK, Richards SM, Chopra R, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2007;109(3):944–950.
  • Goto H. Childhood relapsed acute lymphoblastic leukemia: biology and recent treatment progress. Pediatr Int. 2015;57(6):1059–1066.
  • Gokbuget N, Stanze D, Beck J, et al. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood. 2012;120(10):2032–2041.
  • Bassan R, Spinelli O, Oldani E, et al. Different molecular levels of post-induction minimal residual disease may predict hematopoietic stem cell transplantation outcome in adult Philadelphia-negative acute lymphoblastic leukemia. Blood Cancer J. 2014;4:e225.
  • Berry DA, Zhou S, Higley H, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol. 2017;3(7):e170580.
  • Bruggemann M, Gokbuget N, Kneba M. Acute lymphoblastic leukemia: monitoring minimal residual disease as a therapeutic principle. Semin Oncol. 2012;39(1):47–57.
  • Eckert C, Hagedorn N, Sramkova L, et al. Monitoring minimal residual disease in children with high-risk relapses of acute lymphoblastic leukemia: prognostic relevance of early and late assessment. Leukemia. 2015;29(8):1648–1655.
  • Gokbuget N, Kneba M, Raff T, et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 2012;120(9):1868–1876.
  • van Dongen JJ, van der Velden VH, Bruggemann M, et al. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 2015;125(26):3996–4009.
  • Mohseni M, Uludag H, Brandwein JM. Advances in biology of acute lymphoblastic leukemia (ALL) and therapeutic implications. Am J Blood Res. 2018;8(4):29–56.
  • Kantarjian H, Stein A, Gokbuget N, et al., Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 376(9): 836–847. 2017. .
  • Papadantonakis N, Advani AS. Recent advances and novel treatment paradigms in acute lymphocytic leukemia. Ther Adv Hematol. 2016;7(5):252–269.
  • Rambaldi A, Ribera J-M, Kantarjian HM, et al. Blinatumomab compared with standard of care for the treatment of adult patients with relapsed/refractory Philadelphia chromosome–positive B-precursor acute lymphoblastic leukemia. Cancer. 2020;126(2):304–310.
  • Greinix HT. Role of CAR-T cell therapy in B-cell acute lymphoblastic leukemia. memo. Memo - Magazine of European Medical Oncology. 2020;13(1):36–42.
  • Nagorsen D, Kufer P, Baeuerle PA, et al. Blinatumomab: a historical perspective. Pharmacol Ther. 2012;136(3):334–342.
  • Löffler A, Kufer P, Lutterbüse R, et al. A recombinant bispecific single-chain antibody, CD19 × CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 2000;95(6):2098–2103.
  • Dreier T, Lorenczewski G, Brandl C, et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer. 2002;100(6):690–697.
  • Hoffmann P, Hofmeister R, Brischwein K, et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer. 2005;115(1):98–104.
  • Loffler A, Gruen M, Wuchter C, et al. Efficient elimination of chronic lymphocytic leukaemia B cells by autologous T cells with a bispecific anti-CD19/anti-CD3 single-chain antibody construct. Leukemia. 2003;17(5):900–909.
  • Zimmerman Z, Maniar T, Nagorsen D. Unleashing the clinical power of T cells: CD19/CD3 bi-specific T cell engager (BiTE(R)) antibody construct blinatumomab as a potential therapy. Int Immunol. 2015;27(1):31–37.
  • Fooksman DR, Vardhana S, Vasiliver-Shamis G, et al. Functional anatomy of T cell activation and synapse formation. Annu Rev Immunol. 2010;28(1):79–105.
  • Offner S, Hofmeister R, Romaniuk A, et al. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol. 2006;43(6):763–771.
  • Dreier T, Baeuerle PA, Fichtner I, et al. T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3- bispecific single-chain antibody construct. J Immunol. 2003;170(8):4397–4402.
  • Klinger M, Brandl C, Zugmaier G, et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell–engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood. 2012;119(26):6226–6233.
  • Klinger M, Zugmaier G, Nagele V, et al. Adhesion of T cells to endothelial cells facilitates blinatumomab-associated neurologic adverse events. Cancer Res. 2020;80(1):91–101.
  • Gruen M, Bommert K, Bargou RC. T-cell-mediated lysis of B cells induced by a CD19xCD3 bispecific single-chain antibody is perforin dependent and death receptor independent. Cancer Immunol Immunother. 2004;53(7):625–632.
  • Mack M, Riethmuller G, Kufer P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc Natl Acad Sci U S A. 1995;92(15):7021–7025.
  • Kischel RHS, Baeuerle P, Kufer P Effector memory T cells make a major contribution to redirected target cell lysis by T cell-engaging BiTE antibody MT110. [Abstract]. AACR Annual Meeting, Apr 18-22; Denver, CO (2009).
  • Hijazi Y, Klinger M, Kratzer A, et al. Pharmacokinetic and pharmacodynamic relationship of blinatumomab in patients with non-hodgkin lymphoma. Curr Clin Pharmacol. 2018;13(1):55–64.
  • Viardot A, Goebeler M-E, Hess G, et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma. Blood. 2016;127(11):1410–1416.
  • Zhu M, Wu B, Brandl C, et al. Blinatumomab, a bispecific T-cell Engager (BiTE®) for CD-19 targeted cancer immunotherapy: clinical pharmacology and its implications. Clin Pharmacokinet. 2016;55(10):1271–1288.
  • Klinger M, Benjamin J, Kischel R, et al. Harnessing T cells to fight cancer with BiTE ® antibody constructs - past developments and future directions. Immunol Rev. 2016;270(1):193–208. .
  • Goekbuget N, Dombret H, Bonifacio M, et al., BLAST: a confirmatory, single-arm, phase 2 study of Blinatumomab, a bispecific T-cell engager (BiTE®) antibody construct, in patients with minimal residual disease B-precursor acute lymphoblastic leukemia (ALL). Blood. 124(21): 379. 2014. .
  • Martinelli G, Boissel N, Chevallier P, et al., Complete hematologic and molecular response in adult patients with relapsed/refractory philadelphia Chromosome–positive B-Precursor Acute lymphoblastic leukemia following treatment with Blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol. 35(16): 1795–1802. 2017.
  • Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66.
  • Topp MS, Gokbuget N, Zugmaier G, et al. Phase II Trial of the Anti-CD19 Bispecific T Cell–engager Blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-Precursor Acute lymphoblastic leukemia. J Clin Oncol. 2014;32(36):4134–4140.
  • von Stackelberg A, Locatelli F, Zugmaier G, et al., Phase I/phase II study of Blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J Clin Oncol. 34(36): 4381–4389. 2016. .
  • Topp MS, Kufer P, Gokbuget N, et al. Targeted therapy with the T-Cell–engaging antibody Blinatumomab of chemotherapy-refractory minimal residual disease in B-Lineage Acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29(18):2493–2498.
  • Bargou R, Leo E, Zugmaier G, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321(5891):974–977.
  • Goebeler M-E, Knop S, Viardot A, et al. Bispecific T-cell engager (BiTE) antibody construct Blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase I study. J Clin Oncol. 2016;34(10):1104–1111.
  • FDA. Clinical pharmacology and biopharmaceutics review(s), BLA 125557. 2014 [cited 2020 May 29]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125557Orig1s000ClinPharmRedt.pdf
  • Zhu M, Kratzer A, Johnson J, et al. Blinatumomab Pharmacodynamics and Exposure-Response Relationships in Relapsed/Refractory Acute Lymphoblastic Leukemia. J Clin Pharmacol. 2018;58(2):168–179.
  • Clements JD, Zhu M, Kuchimanchi M, et al. Population pharmacokinetics of blinatumomab in pediatric and adult patients with hematological malignancies. Clin Pharmacokinet. 2020;59(4):463–474.
  • Robinson AC, Marini BL, Pettit KM, et al. Successful use of blinatumomab in a patient with acute lymphoblastic leukemia and severe hepatic dysfunction. J Oncol Pharm Pract. 2020;26(1):200–205.
  • Stein AS, Larson RA, Schuh AC, et al. Exposure-adjusted adverse events comparing blinatumomab with chemotherapy in advanced acute lymphoblastic leukemia. Blood Advances. 2018;2(13):1522–1531.
  • Stein AS, Schiller G, Benjamin R, et al. Neurologic adverse events in patients with relapsed/refractory acute lymphoblastic leukemia treated with blinatumomab: management and mitigating factors. Ann Hematol. 2019;98(1):159–167.
  • Shimabukuro-Vornhagen A, Godel P, Subklewe M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56.
  • Brandl C, Haas C, d’Argouges S, et al. The effect of dexamethasone on polyclonal T cell activation and redirected target cell lysis as induced by a CD19/CD3-bispecific single-chain antibody construct. Cancer Immunol Immunother. 2007;56(10):1551–1563.
  • Walz A, Andratschke M, Wollenberg B, et al. Prednisolone reduces TNF-alpha release by PBMCs activated with a trifunctional bispecific antibody but not their anti-tumor activity. Anticancer Res. 2005;25(6B):4239–4243.
  • Aldoss I, Song J, Stiller T, et al. Correlates of resistance and relapse during blinatumomab therapy for relapsed/refractory acute lymphoblastic leukemia. Am J Hematol. 2017;92(9):858–865.
  • Barrett DM, Singh N, Hofmann TJ, et al. Interleukin 6 is not made by chimeric antigen receptor T cells and does not impact their function. [Abstract]. Blood. 2016;128(22):654.
  • Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25.
  • Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor–modified T cells for Acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–1518.
  • Jen EY, Xu Q, Schetter A, et al. FDA approval: blinatumomab for patients with B-cell precursor acute lymphoblastic leukemia in morphologic remission with minimal residual disease. Clin Cancer Res. 2019;25(2):473–477.
  • FDA. Briefing document for oncologic drugs advisory committee meeting, BLA 125557 S-013. 2018 [cited 2020 Apr 29]. https://www.fda.gov/media/111622/download;https://www.fda.gov/media/111628/download
  • Kebenko M, Goebeler M-E, Wolf M, et al. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors. Oncoimmunology. 2018;7(8):e1450710.
  • Ravandi F, Stein AS, Kantarjian HM, et al. A phase 1 first-in-human study of AMG 330, an Anti-CD33 bispecific T-cell engager (BiTE®) antibody construct, in relapsed/refractory acute myeloid leukemia (R/R AML). [Abstract]. Blood. 2018;132(Supplement 1):25.
  • Schuster SJ, Bartlett NL, Assouline S, et al. Mosunetuzumab induces complete remissions in poor prognosis non-Hodgkin lymphoma patients, including those who are resistant to or relapsing after chimeric antigen receptor T-cell (CAR-T) therapies, and is active in treatment through multiple lines. [Abstract]. Blood. 2019;134(Supplement_1):6.
  • Kranick S, Phan G, Kochenderfer J, et al. Aphasia as a complication of CD19-targeted chimeric antigen receptor immunotherapy. [Abstract]. Neurology. 2014;82(10 Supplement):S52.006.
  • Santomasso BD, Park JH, Salloum D, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell Acute lymphoblastic leukemia. Cancer Discov. 2018;8(8):958–971.
  • Bargou RC, Zugmaier G, Bonifacio M, et al. Health-related quality of life in adults with B-cell precursor acute lymphoblastic leukemia and minimal residual disease treated with Blinatumomab. [Abstract]. Blood. 2018;132(Supplement 1):1377.
  • Stein A, Franklin JL, Chia VM, et al. Benefit–risk assessment of Blinatumomab in the treatment of relapsed/refractory B-cell precursor Acute LYMPHOBLASTIC LEUKEMia. Drug Saf. 2019;42(5):587–601.
  • Siddiqui O. Statistical methods to analyze adverse events data of randomized clinical trials. Journal of Biopharmaceutical Statistics. 2009;19(5):889–899.
  • Bassan R, Bruggemann M, Radcliffe H-S, et al. A systematic literature review and meta-analysis of minimal residual disease as a prognostic indicator in adult B-cell acute lymphoblastic leukemia. Haematologica. 2019;104(10):2028–2039.
  • Giebel S, Labopin M, Socie G, et al. Improving results of allogeneic hematopoietic cell transplantation for adults with acute lymphoblastic leukemia in first complete remission: an analysis from the Acute leukemia working party of the European society for blood and marrow transplantation. Haematologica. 2017;102(1):139–149.
  • Bader P, Hancock J, Kreyenberg H, et al. Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia. 2002;16(9):1668–1672.
  • Bader P, Kreyenberg H, Henze GHR, et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM study group. J Clin Oncol. 2009;27(3):377–384.
  • Zhao X-S, Liu Y-R, Xu L-P, et al. Minimal residual disease status determined by multiparametric flow cytometry pretransplantation predicts the outcome of patients with ALL receiving unmanipulated haploidentical allografts. Am J Hematol. 2019;94(5):512–521.
  • Gokbuget N, Zugmaier G, Klinger M, et al. Long-term relapse-free survival in a phase 2 study of blinatumomab for the treatment of patients with minimal residual disease in B-lineage acute lymphoblastic leukemia. Haematologica. 2017;102(4):e132–e135.
  • Topp MS, Gokbuget N, Zugmaier G, et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012;120(26):5185–5187.
  • Gokbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131(14):1522–1531.
  • Goekbuget N, Dombret H, Zugmaier G, et al. S1619 Blinatumomab for minimal residual disease (MRD) in adults with B Cell precursor acute lymphoblastic leukemia (BCPALL): median overall survival (OS) not reached at 5 years for complete mrd responders. [Abstract]. HemaSphere. 2019;3(S1):747.
  • Locatelli F, Zugmaier G, Bader P, et al. Blinatumomab in pediatric patients with relapsed/refractory B-cell precursor and molecularly resistant Acute lymphoblastic leukemia (R/R ALL): updated analysis of 110 patients treated in an expanded access study (RIALTO). [Abstract]. Blood. 2019;134(Supplement_1):1294.
  • Gokbuget N, Kantarjian HM, Bruggemann M, et al. Molecular response with blinatumomab in relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Blood Advances. 2019;3(20):3033–3037.
  • Kiyoi H, Morris JD, Oh I, et al. Phase 1b/2 study of blinatumomab in Japanese adults with relapsed/refractory acute lymphoblastic leukemia. Cancer Science. 2020;111(4):1314–1323.
  • Jabbour EJ, Gokbuget N, Kantarjian HM, et al. Transplantation in adults with relapsed/refractory acute lymphoblastic leukemia who are treated with blinatumomab from a phase 3 study. Cancer. 2019;125(23):4181–4192.
  • Brown P, Zugmaier G, Gore L, et al. Day 15 bone marrow minimal residual disease predicts response to blinatumomab in relapsed/refractory paediatric B-ALL. Br J Haematol. 2020;188(4):e36–e9.
  • Gore L, Locatelli F, Zugmaier G, et al. Survival after blinatumomab treatment in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Blood Cancer Journal. 2018;8(9):80.
  • Brown PA, Ji L, Xu X, et al. A randomized phase 3 trial of blinatumomab vs. chemotherapy as post-reinduction therapy in high and intermediate risk (HR/IR) first relapse of B-Acute lymphoblastic leukemia (B-ALL) in Children and adolescents/young adults (AYAs) demonstrates superior efficacy and tolerability of Blinatumomab: a report from Children’s oncology group study AALL1331. [Abstract]. Blood. 2019;134(Supplement_2):LBA–1.
  • Ravandi F. Current management of Philadelphia chromosome positive all and the role of stem cell transplantation. Hematology Am Soc Hematol Educ Program. 2017; 1:22–27.
  • Soverini S, Bassan R, Lion T. Treatment and monitoring of Philadelphia chromosome-positive leukemia patients: recent advances and remaining challenges. J Hematol Oncol. 2019;12(1):39.
  • Mian AA, Schull M, Zhao Z, et al. The gatekeeper mutation T315I confers resistance against small molecules by increasing or restoring the ABL-kinase activity accompanied by aberrant transphosphorylation of endogenous BCR, even in loss-of-function mutants of BCR/ABL. Leukemia. 2009;23(9):1614–1621.
  • Assi R, Kantarjian H, Short NJ, et al. Safety and efficacy of blinatumomab in combination with a tyrosine kinase inhibitor for the treatment of relapsed philadelphia chromosome-positive leukemia. Clin Lymphoma Myeloma Leuk. 2017;17(12):897–901.
  • Couturier M-A, Thomas X, Raffoux E, et al. PS946 BLINATUMOMAB + PONATINIB for relapsed ph1-positive Acute lymphoblastic leukemia: the French experience. [Abstract]. HemaSphere. 2019;3(S1):426–427.
  • El Chaer F, Holtzman NG, Sausville EA, et al. Relapsed philadelphia chromosome-positive pre-B-ALL after CD19-directed CAR-T cell therapy successfully treated with combination of blinatumomab and ponatinib. Acta Haematol. 2019;141(2):107–110.
  • King AC, Pappacena JJ, Tallman MS, et al. Blinatumomab administered concurrently with oral tyrosine kinase inhibitor therapy is a well-tolerated consolidation strategy and eradicates measurable residual disease in adults with Philadelphia chromosome positive acute lymphoblastic leukemia. Leuk Res. 2019;79:27–33.
  • Sokolov AN, Parovichnikova EN, Troitskaya VV, et al. Blinatumomab + Tyrosine Kinase Inhibitors with no chemotherapy in BCR-ABL-positive or IKZF1-deleted or FLT3-ITD-positive relapsed/refractory acute lymphoblastic leukemia patients: high molecular remission rate and toxicity profile. [Abstract]. Blood. 2017;130(Supplement1):3884.
  • McCloskey JK, Gagnon J, McCabe T, et al. Blinatumomab in combination with tyrosine kinase inhibitors safely and effectively induces rapid, deep, and durable molecular responses in relapsed and refractory philadelphia positive Acute leukemias. [Abstract]. Blood. 2019;134(Supplement_1):3812.
  • Braig F, Brandt A, Goebeler M, et al. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood. 2017;129(1):100–104.
  • Mejstrikova E, Hrusak O, Borowitz MJ, et al. CD19-negative relapse of pediatric B-cell precursor acute lymphoblastic leukemia following blinatumomab treatment. Blood Cancer Journal. 2017;7(12):659.
  • Aldoss I, Forman SJ. How I treat adults with advanced acute lymphoblastic leukemia eligible for CD19-targeted immunotherapy. Blood. 2020;135(11):804–813.
  • Jabbour E, Dull J, Yilmaz M, et al. Outcome of patients with relapsed/refractory acute lymphoblastic leukemia after blinatumomab failure: no change in the level of CD19 expression. Am J Hematol. 2018;93(3):371–374.
  • Ruella M, Maus MV. Catch me if you can: leukemia escape after CD19-directed T cell immunotherapies. Comput Struct Biotechnol J. 2016;14:357–362.
  • Orlando EJ, Han X, Tribouley C, et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 2018;24(10):1504–1506.
  • Sotillo E, Barrett DM, Black KL, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5(12):1282–1295.
  • He RR, Nayer Z, Hogan M, et al. Immunotherapy- (Blinatumomab-) related lineage switch of KMT2A/AFF1 rearranged B-lymphoblastic leukemia into Acute myeloid leukemia/myeloid sarcoma and subsequently into B/myeloid mixed phenotype Acute leukemia. Case Rep Hematol. 2019;7394619:2019.
  • Jacoby E. Relapse and resistance to CAR-T cells and Blinatumomab in hematologic malignancies. Clin Hematol Int. 2019;1(2):79–84.
  • Rossi JG, Bernasconi AR, Alonso CN, et al. Lineage switch in childhood acute leukemia: an unusual event with poor outcome. Am J Hematol. 2012;87(9):890–897.
  • Gardner R, Wu D, Cherian S, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127(20):2406–2410.
  • Rayes A, McMasters RL, O’Brien MM. Lineage switch in MLL-rearranged infant leukemia following CD19-directed therapy. Pediatr Blood Cancer. 2016;63(6):1113–1115.
  • Wolfl M, Rasche M, Eyrich M, et al. Spontaneous reversion of a lineage switch following an initial blinatumomab-induced ALL-to-AML switch in MLL-rearranged infant ALL. Blood Adv. 2018;2(12):1382–1385.
  • Balducci E, Nivaggioni V, Boudjarane J, et al. Lineage switch from B acute lymphoblastic leukemia to acute monocytic leukemia with persistent t(4;11)(q21;q23) and cytogenetic evolution under CD19-targeted therapy. Ann Hematol. 2017;96(9):1579–1581.
  • Duffner U, Abdel-Mageed A, Younge J, et al. The possible perils of targeted therapy. Leukemia. 2016;30(7):1619–1621.
  • Nagel I, Bartels M, Duell J, et al. Hematopoietic stem cell involvement in BCR-ABL1-positive ALL as a potential mechanism of resistance to blinatumomab therapy. Blood. 2017;130(18):2027–2031.
  • Cohen A, Petsche D, Grunberger T, et al. Interleukin 6 induces myeloid differentiation of a human biphenotypic leukemic cell line. Leuk Res. 1992;16(8):751–760.
  • Wei J, Wunderlich M, Fox C, et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell. 2008;13(6):483–495.
  • Oberley MJ, Gaynon PS, Bhojwani D, et al. Myeloid lineage switch following chimeric antigen receptor T-cell therapy in a patient with TCF3-ZNF384 fusion-positive B-lymphoblastic leukemia. Pediatr Blood Cancer. 2018;65(9):e27265.
  • Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–564.
  • Duell J, Dittrich M, Bedke T, et al. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia. 2017;31(10):2181–2190. .
  • Knecht H, Kotrova M, Reigl T, et al. T-cell receptor. Repertoire characteristics in relapsed/refractory B-cell precursor Acute lymphoblastic leukemia on Blinatumomab treatment. [Abstract]. Haematologica. 2017;102:329–330.
  • Zugmaier G, Gokbuget N, Klinger M, et al. Long-term survival and T-cell kinetics in relapsed/refractory all patients who achieved MRD response after blinatumomab treatment. Blood. 2015;126(24):2578–2584.
  • Bücklein V, Scheurer M, Brauchle B, et al. Predictors of efficacy for Blinatumomab in BCP-ALL patients: non-responders show impaired CD19-BiTE®-mediated cytotoxicity in vitro. [Abstract]. Blood. 2019;134(Supplement_1):2632.
  • Dufner V, Sayehli CM, Chatterjee M, et al. Long-term outcome of patients with relapsed/refractory B-cell non-Hodgkin lymphoma treated with blinatumomab. Blood Adv. 2019;3(16):2491–2498.
  • Al Malki MMAI, Song J, Pullarkat V. CD19-positive extramedullary relapse of Acute lymphoblastic leukemia after Blinatumomab therapy. Austin Med Sci. 2016;1(1):1002.
  • Demosthenous C, Lalayanni C, Iskas M, et al. Extramedullary relapse and discordant CD19 expression between bone marrow and extramedullary sites in relapsed acute lymphoblastic leukemia after blinatumomab treatment. Curr Probl Cancer. 2019;43(3):222–227.
  • Velasquez MP, Szoor A, Vaidya A, et al. CD28 and 41BB costimulation enhances the effector function of CD19-specific engager T cells. Cancer Immunol Res. 2017;5(10):860–870.
  • Feucht J, Kayser S, Gorodezki D, et al. T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts. Oncotarget. 2016;7(47):76902–76919.
  • Laszlo GS, Gudgeon CJ, Harrington KH, et al. T-cell ligands modulate the cytolytic activity of the CD33/CD3 BiTE antibody construct, AMG 330. Blood Cancer J. 2015;5:e340.
  • Balaji KN, Schaschke N, Machleidt W, et al. Surface cathepsin B protects cytotoxic lymphocytes from self-destruction after degranulation. J Exp Med. 2002;196(4):493–503.
  • Katz JB, Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev. 2008;222:206–221.
  • Lehmann C, Zeis M, Schmitz N, et al. Impaired binding of perforin on the surface of tumor cells is a cause of target cell resistance against cytotoxic effector cells. Blood. 2000;96(2):594–600.
  • Medema JP, de Jong J, Peltenburg LT, et al. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci U S A. 2001;98(20):11515–11520.
  • Sutton VR, Vaux DL, Trapani JA. Bcl-2 prevents apoptosis induced by perforin and granzyme B, but not that mediated by whole cytotoxic lymphocytes. J Immunol. 1997;158(12):5783–5790.
  • Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010;31(6):220–227.
  • Richard-Carpentier G, Kantarjian HM, Short NJ, et al. Updated Results from the Phase II Study of Hyper-CVAD in Sequential Combination with Blinatumomab in Newly Diagnosed Adults with B-Cell Acute Lymphoblastic Leukemia (B-ALL). [Abstract]. Blood. 2019;134(Supplement_1):3807.
  • Jabbour EJ, Sasaki K, Ravandi F, et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-HCVD) with or without blinatumomab versus standard intensive chemotherapy (HCVAD) as frontline therapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukemia: A propensity score analysis. Cancer. 2019;125(15):2579–2586.
  • Kantarjian H, Ravandi F, Short NJ, et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2018;19(2):240–248.
  • Chiaretti S, Bassan R, Vitale A, et al. Dasatinib-Blinatumomab combination for the front-line treatment of adult Ph+ all patients. Updated results of the Gimema LAL2116 D-Alba trial. [Abstract]. Blood. 2019;134(Supplement_1):740.
  • Dombret H, Topp MS, Schuh AC, et al. Blinatumomab versus chemotherapy in first salvage or in later salvage for B-cell precursor acute lymphoblastic leukemia. Leuk Lymphoma. 2019;60(9):2214–2222.
  • Kebriaei P, Banerjee PP, Ganesh C, et al. Blinatumomab is well tolerated maintenance therapy following allogeneic hematopoietic cell transplantation for Acute lymphoblastic leukemia. [Abstract]. Blood. 2019;134(Supplement_1):1298.
  • Kobold S, Pantelyushin S, Rataj F, et al. Rationale for combining bispecific T cell activating antibodies with checkpoint blockade for cancer therapy. Front Oncol. 2018;8:285.
  • Schwartz M, Damon LE, Jeyakumar D, et al. Blinatumomab in combination with Pembrolizumab is safe for adults with relapsed or refractory B-lineage Acute lymphoblastic leukemia: university of California hematologic malignancies consortium study 1504. [Abstract]. Blood. 2019;134(Supplement_1):3880.
  • Webster J, Luskin MR, Prince GT, et al. Blinatumomab in combination with immune checkpoint inhibitors of PD-1 and CTLA-4 in adult patients with relapsed/refractory (R/R) CD19 positive B-cell Acute lymphoblastic leukemia (ALL): preliminary results of a phase i study. [Abstract]. Blood. 2018;132(Supplement1):557.
  • Leconet W, Liu H, Guo M, et al. Anti-PSMA/CD3 bispecific antibody delivery and antitumor activity using a polymeric depot formulation. Mol Cancer Ther. 2018;17(9):1927–1940.
  • Nisonoff A, Rivers MM. Recombination of a mixture of univalent antibody fragments of different specificity. Arch Biochem Biophys. 1961;93:460–462.
  • Staerz UD, Bevan MJ. Cytotoxic T lymphocyte-mediated lysis via the Fc receptor of target cells. Eur J Immunol. 1985;15(12):1172–1177.
  • Staerz UD, Kanagawa O, Bevan MJ. Hybrid antibodies can target sites for attack by T cells. Nature. 1985;314(6012):628–631.
  • Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs. 2017;9(2):182–212.
  • Seimetz D. Novel monoclonal antibodies for cancer treatment: the trifunctional antibody Catumaxomab (Removab®). J Cancer. 2011;2:309–316.
  • Liu H, Saxena A, Sidhu SS, et al. Fc engineering for developing therapeutic bispecific antibodies and Novel scaffolds. Front Immunol. 2017;8:38. DOI:10.3389/fimmu.2017.00038
  • Chu SY, Lee S-H, Rashid R, et al. Immunotherapy with long-lived Anti-CD20 × Anti-CD3 bispecific antibodies stimulates potent T Cell-mediated killing of human B cell lines and of circulating and lymphoid B cells in Monkeys: a potential therapy for B cell lymphomas and leukemias. [Abstract]. Blood. 2014;124(21):3111.
  • Ellerman D. Bispecific T-cell engagers: towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods. 2019;154:102–117.
  • Foster LH, Lum LG. Treatment of hematological malignancies with T cell redirected bispecific antibodies: current status and future needs. Expert Opin Biol Ther. 2019;19(7):707–720.
  • Klein C, Schaefer W, Regula JT, et al. Engineering therapeutic bispecific antibodies using CrossMab technology. Methods. 2019;154:21–31.
  • Lejeune M, Kose MC, Duray E, et al. Bispecific, T-cell-recruiting antibodies in B-cell malignancies. Front Immunol. 2020;11:762. DOI:10.3389/fimmu.2020.00762
  • Lorenczewski G, Friedrich M, Kischel R, et al. Generation of a half-life extended Anti-CD19 BiTE® antibody construct compatible with once-weekly dosing for treatment of CD19-positive malignancies. [Abstract]. Blood. 2017;130(Supplement1):2815.
  • Mayer K, Baumann A-L, Grote M, et al. TriFabs—trivalent IgG-shaped bispecific antibody derivatives: design, generation, characterization and application for targeted payload delivery. Int J Mol Sci. 2015;16(11):27497–27507.
  • Moore PA, Zhang W, Rainey GJ, et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. 2011;117(17):4542–4551.
  • Reusch U, Duell J, Ellwanger K, et al. A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19 + tumor cells. MAbs. 2015;7(3):584–604.
  • Liu L, Lam C-YK, Long V, et al. MGD011, A CD19 x CD3 dual-affinity retargeting bi-specific molecule incorporating extended circulating half-life for the treatment of B-cell malignancies. Clin Cancer Res. 2017;23(6):1506–1518.
  • Einsele H, Borghaei H, Orlowski RZ, et al. The BiTE (bispecific T-cell engager) platform: development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer. 2020;126(14):3192–3201.
  • Popplewell L, Verhoef G, Kuruvilla J, et al. A first-in-human study of a half-life extended CD19-targeting BiTE in relapsed/refractory diffuse large B cell lymphoma, mantle cell lymphoma or follicular lymphoma. [Abstract]. Hematol Oncol. 2019;37(S2):566.
  • Dworzak MN, Schumich A, Printz D, et al. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy. Blood. 2008;112(10):3982–3988.
  • Szczepanowski M, Richter J, Kehden B, et al. CD20 Expression and response to Rituximab treatment in B-cell precursor lymphoblastic leukemia - results of the GMALL 08/2013 trial. [Abstract]. Blood. 2018;132(Supplement 1):1409.
  • Bannerji R, Arnason JE, Advani R, et al. Emerging clinical activity of REGN1979, an Anti-CD20 x Anti-CD3 bispecific antibody, in patients with relapsed/refractory follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), and other B-Cell non-Hodgkin lymphoma (B-NHL) subtypes. [Abstract]. Blood. 2018;132(Supplement 1):1690.
  • Dickinson MJ, Morschhauser F, Iacoboni G, et al. CD20-TCB (RG6026), a Novel “2:1” format T-cell-engaging bispecific antibody, induces complete remissions in relapsed/refractory B-cell non-Hodgkin’s lymphoma. Hematol Oncol. 2019;37(S2):92–93.
  • Kieslich A, Ruf P, Lindhofer H, et al. Immunotherapy with the trifunctional anti-CD20 × anti-CD3 antibody FBTA05 in a patient with relapsed t(8;14)-positive post-transplant lymphoproliferative disease. Leuk Lymphoma. 2017;58(8):1989–1992.
  • Roche announces new data on novel CD20-CD3 bispecific cancer immunotherapies in people with difficult-to-treat lymphomas, Investor Roche Update. 2019 [cited 2020 Jun 11]. https://www.roche.com/dam/jcr:054ac171-6fc7-4b73-8436-d31809849747/en/191207-ir-ash-cd20-cd3-bispecific-en.pdf
  • Bacac M, Colombetti S, Herter S, et al. CD20-TCB with Obinutuzumab pretreatment as next-generation treatment of hematologic malignancies. Clin Cancer Res. 2018 [cited 2020 Jun 11];24(19):4785–4797.
  • Buhmann R, Michael S, Juergen H, et al. Immunotherapy with FBTA05 (Bi20), a trifunctional bispecific anti-CD3 x anti-CD20 antibody and donor lymphocyte infusion (DLI) in relapsed or refractory B-cell lymphoma after allogeneic stem cell transplantation: study protocol of an investigator-driven, open-label, non-randomized, uncontrolled, dose-escalating Phase I/II-trial. J Transl Med. 2013;11:160.
  • Du W, Li X-E, Sipple J, et al. Overexpression of IL-3Rα on CD34+CD38− stem cells defines leukemia-initiating cells in Fanconi anemia AML. Blood. 2011;117(16):4243–4252.
  • Pemmaraju N, Lane AA, Sweet KL, et al. Tagraxofusp in blastic plasmacytoid dendritic-cell neoplasm. N Engl J Med. 2019;380(17):1628–1637.
  • Boissel N, Botton S, Thomas X, et al. An open-label, first-in-human, dose escalation study of a novel CD3-CD123 bispecific T-cell engager administered as a single agent by intravenous infusion in patients with relapsed or refractory acute myeloid leukemia, B-cell acute lymphoblastic leukemia, or high risk myelodysplastic syndrome. J Clin Oncol. 2018;36(15_Suppl):TPS7076.
  • Comeau MR, Miller RE, Bader R, et al. Abstract 1786: APVO436, a bispecific anti-CD123 x anti-CD3 ADAPTIs” molecule for redirected T-cell cytotoxicity, induces potent T-cell activation, proliferation and cytotoxicity with limited cytokine release. [Abstract]. Cancer Res. 2018;78:1786.
  • Gaudet F, Nemeth JF, McDaid R, et al. Development of a CD123xCD3 bispecific antibody (JNJ-63709178) for the treatment of Acute myeloid leukemia (AML). [Abstract]. Blood. 2016;128(22):2824.
  • Uy GL, Rettig MP, Vey N, et al. Phase 1 cohort expansion of Flotetuzumab, a CD123×CD3 bispecific Dart® protein in patients with relapsed/refractory acute myeloid leukemia (AML). [Abstract]. Blood. 2018;132(Supplement 1):764.
  • Ravandi F, Bashey A, Foran JM, et al. Complete responses in relapsed/refractory Acute myeloid leukemia (AML) patients on a weekly dosing schedule of XmAb14045, a CD123 x CD3 T cell-engaging bispecific antibody: initial results of a phase 1 study. [Abstract]. Blood. 2018;132(Supplement 1):763.
  • Jitschin R, Saul D, Braun M, et al. CD33/CD3-bispecific T-cell engaging (BiTE®) antibody construct targets monocytic AML myeloid-derived suppressor cells. J Immunother Cancer. 2018;6(1):116.
  • van Rhenen A, van Dongen GAMS, Kelder A, et al. The novel AML stem cell–associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood. 2007;110(7):2659–2666.
  • Novakova M, Vakrmanova B, Slamova L, et al. PF176 monocytic switch and discrepancy between flow cytometric and molecular minimal residual disease are frequent in DUX4 rearranged and PAX5-P80R mutated B-cell precursor acute lymphoblastic leukemia. [Abstract]. HemaSphere. 2019;3(S1):40.
  • Arndt C, Feldmann A, von Bonin M, et al. Costimulation improves the killing capability of T cells redirected to tumor cells expressing low levels of CD33: description of a novel modular targeting system. Leukemia. 2014;28(1):59–69.
  • Hoseini SS, Guo H, Wu Z, et al. A potent tetravalent T-cell–engaging bispecific antibody against CD33 in acute myeloid leukemia. Blood Advances. 2018;2(11):1250–1258.
  • Krupka C, Kufer P, Kischel R, et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell–engaging antibody AMG 330. Blood. 2014;123(3):356–365.
  • Reusch U, Harrington KH, Gudgeon CJ, et al. Characterization of CD33/CD3 tetravalent bispecific tandem diabodies (TandAbs) for the treatment of Acute myeloid leukemia. Clin Cancer Res. 2016;22(23):5829–5838.
  • Westervelt P, Cortes JE, Altman JK, et al. Phase 1 first-in-human trial of AMV564, a bivalent bispecific (2:2) CD33/CD3 T-cell engager, in patients with relapsed/refractory Acute myeloid leukemia (AML). [Abstract]. Blood. 2019;134(Supplement_1):834.
  • van Loo PF, Hangalapura BN, Thordardottir S, et al. MCLA-117, a CLEC12AxCD3 bispecific antibody targeting a leukaemic stem cell antigen, induces T cell-mediated AML blast lysis. Expert Opin Biol Ther. 2019;19(7):721–733.
  • Liu F, Cao Y, Pinz K, et al. First-in-human CLL1-CD33 compound CAR T cell therapy induces complete remission in patients with refractory Acute myeloid leukemia: update on phase 1 clinical trial. [Abstract]. Blood. 2018;132(Supplement 1):901.
  • Dheilly E, Moine V, Broyer L, et al. Selective blockade of the ubiquitous checkpoint receptor CD47 is enabled by dual-targeting bispecific antibodies. Mol Ther. 2017;25(2):523–533.
  • Rothe A, Sasse S, Topp MS, et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(26):4024–4031.
  • Herrmann M, Krupka C, Deiser K, et al. Bifunctional PD-1 × αCD3 × αCD33 fusion protein reverses adaptive immune escape in acute myeloid leukemia. Blood. 2018;132(23):2484–2494.
  • Correnti CE, Laszlo GS, de van der Schueren WJ, et al. Simultaneous multiple interaction T-cell engaging (SMITE) bispecific antibodies overcome bispecific T-cell engager (BiTE) resistance via CD28 co-stimulation. Leukemia. 2018;32(5):1239–1243.
  • Felices M, Lenvik TR, Davis ZB, et al. Generation of BiKEs and TriKEs to improve NK cell-mediated targeting of tumor cells. Methods Mol Biol. 2016;1441:333–346.
  • Vallera DA, Felices M, McElmurry R, et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33 + targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res. 2016;22(14):3440–3450.
  • Choi BD, Yu X, Castano AP, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 2019;37(9):1049–1058.
  • Wing A, Fajardo CA, Posey AD Jr., et al. Improving CART-cell therapy of solid tumors with oncolytic virus–driven production of a bispecific T-cell engager. Cancer Immunol Res. 2018;6(5):605–616.
  • Feins S, Kong W, Williams EF, et al. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 2019;94(S1):S3–S9.
  • June CH, O’Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–1365.
  • Roddie C, O’Reilly M, Dias Alves Pinto J. Manufacturing chimeric antigen receptor T cells: issues and challenges. Cytotherapy. 2019;21(3):327–340.
  • Goebeler ME, Bargou RC. T cell-engaging therapies - BiTEs and beyond. Nat Rev Clin Oncol. 2020;17(7):418–434.
  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–528.
  • Song M-K, Park -B-B, Uhm J-E. Resistance mechanisms to CAR T-cell therapy and overcoming strategy in B-cell hematologic malignancies. Int J Mol Sci. 2019;20(20):5010.
  • Turtle CJ, Hanafi L-A, Berger C, et al. CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–2138.
  • He X, Xiao X, Li Q, et al. Anti-CD19 CAR-T as a feasible and safe treatment against central nervous system leukemia after intrathecal chemotherapy in adults with relapsed or refractory B-ALL. Leukemia. 2019;33(8):2102–2104.
  • Zhang H, Hu Y, Wei G, et al. Successful chimeric antigen receptor T cells therapy in extramedullary relapses of acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplantation. 2020;55(7):1476–1478.
  • Shah BD, Oluwole OO, Baer MR, et al. KTE-C19, an anti-CD19 chimeric antigen receptor (CAR) T cell therapy, in adult patients with relapsed/refractory Acute lymphoblastic leukemia (R/R ALL): outcomes in patients who were treated with prior Blinatumomab in ZUMA-3. Clinical Lymphoma Myeloma and Leukemia. 2018;18:S184.
  • Delea TE, Amdahl J, Boyko D, et al. Cost-effectiveness of blinatumomab versus salvage chemotherapy in relapsed or refractory philadelphia-chromosome-negative B-precursor acute lymphoblastic leukemia from a US payer perspective. Journal of Medical Economics. 2017;20(9):911–922.
  • Delea TE, Zhang X, Amdahl J, et al. Cost effectiveness of Blinatumomab versus Inotuzumab Ozogamicin in adult patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia in the United States. Pharmacoeconomics. 2019;37(9):1177–1193.
  • Critchlow S, Cooper M, van Oostrum I, et al. Estimating the relative treatment effect and corresponding cost-effectiveness estimates of Inotuzumab Ozogamicin Vs. Blinatumomab for adults with philadelphia chromosome-negative (Ph-) relapsed/refractory (R/R) B-cell acute lymphoblastic leukaemia (B-ALL) in the United Kingdom (UK). [Abstract]. Blood. 2019;134(Supplement_1):3427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.