692
Views
8
CrossRef citations to date
0
Altmetric
Review

Biomarkers for acute and chronic graft versus host disease: state of the art

, ORCID Icon, , , , , ORCID Icon, , , , , & show all
Pages 79-96 | Received 20 Sep 2020, Accepted 02 Dec 2020, Published online: 24 Dec 2020

References

  • Holler E, Greinix H, Zeiser R. et al. Acute Graft-Versus-Host Disease. In: Carreras E, Dufour C, Mohty M. editors. The EBMT handbook: hematopoietic stem cell transplantation and cellular therapies. Cham (CH): Springer Copyright 2019; 2019. p. 323–330. EBMT and the Author(s).
  • Wolff D, Lawitschka A. et al. Chronic graft-versus-host disease. In: Carreras E, Dufour C, Mohty M. editors. The EBMT handbook: hematopoietic stem cell transplantation and cellular therapies. Cham (CH): Springer Copyright 2019; 2019. p. 331–345. EBMT and the Author(s).
  • Zeiser R, Blazar BR. Pathophysiology of chronic graft-versus-host disease and therapeutic targets. N Engl J Med. 2017 Dec 28;377(26):2565–2579.
  • Zeiser R, Blazar BR. Acute graft-versus-host disease - biologic process, prevention, and therapy. N Engl J Med. 2017Nov30;377(22):2167–2179.
  • Paczesny S, Hakim FT, Pidala J, et al. National institutes of health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: III. the 2014 biomarker working group report. Biol Blood Marrow Transplant. 2015 May;21(5):780–792.
  • Crossland RE, Norden J, Juric MK, et al. Expression of serum microRNAs is altered during acute graft-versus-host disease. Front Immunol. 2017;8:308.
  • Crossland RE, Norden J, Kralj Juric M, et al. Serum and extracellular vesicle microRNAs miR-423, miR-199, and miR-93* as biomarkers for acute graft-versus-host disease. Front Immunol. 2017;8:1446.
  • Martin PJ, Levine DM, Storer BE, et al. Genome-wide minor histocompatibility matching as related to the risk of graft-versus-host disease. Blood. 2017 Feb 9;129(6):791–798.
  • Santos N, Rodriguez-Romanos R, Nieto JB, et al. UGT2B17 minor histocompatibility mismatch and clinical outcome after HLA-identical sibling donor stem cell transplantation. Bone Marrow Transplant. 2016 Jan;51(1):79–82.
  • Mullally A, Ritz J. Beyond HLA: the significance of genomic variation for allogeneic hematopoietic stem cell transplantation. Blood. 2007 Feb 15;109(4):1355–1362.
  • Warren EH, Zhang XC, Li S, et al. Effect of MHC and non-MHC donor/recipient genetic disparity on the outcome of allogeneic HCT. Blood. 2012 Oct 4;120(14):2796–2806.
  • Adom D, Rowan C, Adeniyan T, et al. Biomarkers for allogeneic HCT outcomes. Front Immunol. 2020;11:673.
  • Martin PJ. Increased disparity for minor histocompatibility antigens as a potential cause of increased GVHD risk in marrow transplantation from unrelated donors compared with related donors. Bone Marrow Transplant. 1991 Sep;8(3):217–223.
  • Sucheston-Campbell L, Preus L, Spellman S, et al. Functional single nucleotide polymorphisms (SNPs) in the major histocompatibility complex (MHC) class II region are associated with overall survival (OS) after HLA matched unrelated donor BMT: results from the discovery-BMT study. Biol Blood Marrow Transplant. 2016;22(3):S72–S73.
  • Dickinson AM. Non-HLA genetics and predicting outcome in HSCT. Int J Immunogenet.. 2008 Aug;35(4–5):375–380.
  • Elmaagacli AH, Koldehoff M, Landt O, et al. Relation of an interleukin-23 receptor gene polymorphism to graft-versus-host disease after hematopoietic-cell transplantation. Bone Marrow Transplant. 2008 May;41(9):821–826.
  • Kim DH, Jung HD, Lee NY, et al. Single nucleotide polymorphism of CC chemokine ligand 5 promoter gene in recipients may predict the risk of chronic graft-versus-host disease and its severity after allogeneic transplantation. Transplantation. 2007 Oct 15;84(7):917–925.
  • Karaesmen E, Rizvi AA, Preus LM, et al. Replication and validation of genetic polymorphisms associated with survival after allogeneic blood or marrow transplant. Blood. 2017;130(13):1585–1596.
  • Martin PJ, Fan W, Storer BE, et al. Replication of associations between genetic polymorphisms and chronic graft-versus-host disease. Blood. 2016 Nov 17;128(20):2450–2456.
  • Karaesmen E, Hahn T, Dile AJ, et al. Multiple functional variants in the IL1RL1 region are pretransplant markers for risk of GVHD and infection deaths. Blood Adv. 2019 Aug 27;3(16):2512–2524.
  • Martinez-Laperche C, Buces E, Aguilera-Morillo MC, et al. A novel predictive approach for GVHD after allogeneic SCT based on clinical variables and cytokine gene polymorphisms. Blood Adv. 2018 Jul 24;2(14):1719–1737.
  • Kim DD, Yun J, Won HH, et al. Multiple single-nucleotide polymorphism-based risk model for clinical outcomes after allogeneic stem-cell transplantation, especially for acute graft-versus-host disease. Transplantation. 2012 Dec 27;94(12):1250–1257.
  • Peled JU, Devlin SM, Staffas A, et al. Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol. 2017 May 20;35(15):1650–1659.
  • Shono Y, Docampo MD, Peled JU, et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med. 2016 May 18;8(339):339ra71.
  • Weber D, Jenq RR, Peled JU, et al. Microbiota disruption induced by early use of broad-spectrum antibiotics is an independent risk factor of outcome after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2017;23(5):845–852.
  • Ferrara JL, Levine JE, Reddy P, et al. Graft-versus-host disease. Lancet. 2009 May 2;373(9674):1550–1561.
  • Reinhardt K, Foell D, Vogl T, et al. Monocyte-induced development of Th17 cells and the release of S100 proteins are involved in the pathogenesis of graft-versus-host disease. J Immunol. 2014 Oct 1;193(7):3355–3365.
  • Schwab L, Goroncy L, Palaniyandi S, et al. Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage. Nature Med. 2014 Jun;20(6):648–654.
  • Socie G, Mary JY, Lemann M, et al. Prognostic value of apoptotic cells and infiltrating neutrophils in graft-versus-host disease of the gastrointestinal tract in humans: TNF and Fas expression. Blood. 2004 Jan 1;103(1):50–57.
  • Penack O, Henke E, Suh D, et al. Inhibition of neovascularization to simultaneously ameliorate graft-vs-host disease and decrease tumor growth. J Natl Cancer Inst. 2010;102(12):894–908.
  • Riesner K, Shi Y, Jacobi A, et al. Initiation of acute graft-versus-host disease by angiogenesis. Blood. 2017 Apr 6;129(14):2021–2032.
  • Sasaki N, Sachs N, Wiebrands K, et al. Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon. Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5399–407.
  • Clevers HC, Bevins CL. Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol. 2013;75(1):289–311.
  • Sato T, van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011 Jan 20;469(7330):415–418.
  • Eriguchi Y, Takashima S, Oka H, et al. Graft-versus-host disease disrupts intestinal microbial ecology by inhibiting Paneth cell production of alpha-defensins. Blood. 2012 Jul 5;120(1):223–231.
  • Taur Y, Jenq RR, Perales MA, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014 Aug 14;124(7):1174–1182.
  • Mathewson ND, Jenq R, Mathew AV, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol. 2016 May;17(5):505–513.
  • Chakraverty R, Sykes M. The role of antigen-presenting cells in triggering graft-versus-host disease and graft-versus-leukemia. Blood. 2007 Jul 1;110(1):9–17.
  • Beilhack A, Schulz S, Baker J, et al. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets. Blood. 2005 Aug 1;106(3):1113–1122.
  • Zeiser R. Biology-driven developments in the therapy of acute graft-versus-host disease. Hematology. 2018;2018(1):236–241.
  • Lia G, Di Vito C, Cerrano M, et al. Extracellular vesicles after allogeneic hematopoietic cell transplantation: emerging role in post-transplant complications. Front Immunol. 2020;11: 422–422. 10.3389/fimmu.2020.00422
  • Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease. N Engl J Med. 2018 Nov 29;379(22):2180–2181.
  • Barak V, Schaffer FL, Nisman B, et al. Cytokine dysregulation in chronic graft versus host disease. Leuk Lymphoma. 1995;17(1–2):169–173.
  • Srinivasan M, Flynn R, Price A, et al. Donor B-cell alloantibody deposition and germinal center formation are required for the development of murine chronic GVHD and bronchiolitis obliterans. Blood. 2012 Feb 9;119(6):1570–1580.
  • Wu T, Young JS, Johnston H, et al. Thymic damage, impaired negative selection, and development of chronic graft-versus-host disease caused by donor CD4+ and CD8+ T cells. J Immunol. 2013 Jul 1;191(1):488–499.
  • Cooke KR, Luznik L, Sarantopoulos S, et al. The biology of chronic graft-versus-host disease: a task force report from the national institutes of health consensus development project on criteria for clinical trials in chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2017;23(2):211–234.
  • MacDonald KP, Blazar BR, Hill GR. Cytokine mediators of chronic graft-versus-host disease. J Clin Invest. 2017 Jun 30;127(7):2452–2463.
  • MacDonald KP, Hill GR, Blazar BR. Chronic graft-versus-host disease: biological insights from preclinical and clinical studies. Blood. 2017Jan5;129(1):13–21.
  • Socie G. Disease severity in chronic graft-versus-host disease: doctors’ gut feeling versus biostatistics? Haematologica. 2014 Oct;99(10):1534–1536.
  • Socie G, Ritz J. Current issues in chronic graft-versus-host disease. Blood. 2014 Jul 17;124(3):374–384.
  • Weinberg K, Blazar BR, Wagner JE, et al. Factors affecting thymic function after allogeneic hematopoietic stem cell transplantation. Blood. 2001 Mar 1;97(5):1458–1466.
  • Blazar BR, Murphy WJ, Abedi M. Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol. 2012 May 11;12(6):443–458.
  • Clave E, Busson M, Douay C, et al. Acute graft-versus-host disease transiently impairs thymic output in young patients after allogeneic hematopoietic stem cell transplantation. Blood. 2009 Jun 18;113(25):6477–6484.
  • Fallen PR, McGreavey L, Madrigal JA, et al. Factors affecting reconstitution of the T cell compartment in allogeneic haematopoietic cell transplant recipients. Bone Marrow Transplant. 2003 Nov;32(10):1001–1014.
  • Gray DH, Seach N, Ueno T, et al. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood. 2006 Dec 1;108(12):3777–3785.
  • Fletcher AL, Lowen TE, Sakkal S, et al. Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment. J Immunol. 2009 Jul 15;183(2):823–831.
  • Williams KM, Mella H, Lucas PJ, et al. Single cell analysis of complex thymus stromal cell populations: rapid thymic epithelia preparation characterizes radiation injury. Clin Transl Sci. 2009 Aug;2(4):279–285.
  • Lia G, Butera S, Evangelista A, et al. Long-term thymic function and reconstitution of the T cell compartment after T cell-replete haplo-identical allografting. Biol Blood Marrow Transplant. 2019;25(3):S331.
  • Sarantopoulos S. Antibodies are back for thymic attack in cGVHD. Blood. 2016 May 5;127(18):2170–2171.
  • Tivol E, Komorowski R, Drobyski WR. Emergent autoimmunity in graft-versus-host disease. Blood. 2005 Jun 15;105(12):4885–4891.
  • Wu J, Yan Z, Schwartz DE, et al. Activation of NLRP3 inflammasome in alveolar macrophages contributes to mechanical stretch-induced lung inflammation and injury. J Immunol. 2013 Apr 1;190(7):3590–3599.
  • Sakoda Y, Hashimoto D, Asakura S, et al. Donor-derived thymic-dependent T cells cause chronic graft-versus-host disease. Blood. 2007 Feb 15;109(4):1756–1764.
  • Flynn R, Du J, Veenstra RG, et al. Increased T follicular helper cells and germinal center B cells are required for cGVHD and bronchiolitis obliterans. Blood. 2014 Jun 19;123(25):3988–3998.
  • Khoder A, Sarvaria A, Alsuliman A, et al. Regulatory B cells are enriched within the IgM memory and transitional subsets in healthy donors but are deficient in chronic GVHD. Blood. 2014 Sep 25;124(13):2034–2045.
  • Hu Y, He GL, Zhao XY, et al. Regulatory B cells promote graft-versus-host disease prevention and maintain graft-versus-leukemia activity following allogeneic bone marrow transplantation. Oncoimmunology. 2017;6(3):e1284721.
  • Kariminia A, Holtan SG, Ivison S, et al. Heterogeneity of chronic graft-versus-host disease biomarkers: association with CXCL10 and CXCR3+ NK cells. Blood. 2016 Jun 16;127(24):3082–3091.
  • Du J, Paz K, Thangavelu G, et al. Invariant natural killer T cells ameliorate murine chronic GVHD by expanding donor regulatory T cells. Blood. 2017 Jun 8;129(23):3121–3125.
  • Zhang C, Todorov I, Zhang Z, et al. Donor CD4+ T and B cells in transplants induce chronic graft-versus-host disease with autoimmune manifestations. Blood. 2006 Apr 1;107(7):2993–3001.
  • Zhao DM, Thornton AM, DiPaolo RJ, et al. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood. 2006 May 15;107(10):3925–3932.
  • Allen JL, Fore MS, Wooten J, et al. B cells from patients with chronic GVHD are activated and primed for survival via BAFF-mediated pathways. Blood. 2012 Sep 20;120(12):2529–2536.
  • Sarantopoulos S, Blazar BR, Cutler C, et al. B cells in chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2015 Jan;21(1):16–23.
  • Sarantopoulos S, Ritz J. Aberrant B-cell homeostasis in chronic GVHD. Blood. 2015 Mar 12;125(11):1703–1707.
  • Shimabukuro-Vornhagen A, Hallek MJ, Storb RF, et al. The role of B cells in the pathogenesis of graft-versus-host disease. Blood. 2009 Dec 3;114(24):4919–4927.
  • de Masson A, Bouaziz JD, Le Buanec H, et al. CD24(hi)CD27(+) and plasmablast-like regulatory B cells in human chronic graft-versus-host disease. Blood. 2015 Mar 12;125(11):1830–1839.
  • Le Huu D, Matsushita T, Jin G, et al. Donor-derived regulatory B cells are important for suppression of murine sclerodermatous chronic graft-versus-host disease. Blood. 2013;121(16):3274–3283.
  • Martires KJ, Baird K, Citrin DE, et al. Localization of sclerotic-type chronic graft-vs-host disease to sites of skin injury: potential insight into the mechanism of isomorphic and isotopic responses. Arch Dermatol. 2011 Sep;147(9):1081–1086.
  • Wolff D, Greinix H, Lee SJ, et al. Biomarkers in chronic graft-versus-host disease: quo vadis? Bone Marrow Transplant. 2018 Jul;53(7):832–837.
  • Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214.
  • Noor F, Kaysen A, Wilmes P, et al. The gut microbiota and hematopoietic stem cell transplantation: challenges and potentials. J Innate Immun. 2019;11(5):405–415.
  • Staffas A, Burgos da Silva M, van den Brink MRM. The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease. Blood. 2017;129(8):927–933.
  • Holler E, Butzhammer P, Schmid K, et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol Blood Marrow Transplant. 2014;20(5):640–645.
  • Peled JU, Gomes AL, Devlin SM, et al. Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation. N Engl J Med. 2020;382(9):822–834.
  • Shono Y. van den Brink MR. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nat Rev Cancer. 2018;18(5):283.
  • Jenq RR, Taur Y, Devlin SM, et al. Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biol Blood Marrow Transplant. 2015;21(8):1373–1383.
  • Golob JL, Pergam SA, Srinivasan S, et al. Stool microbiota at neutrophil recovery is predictive for severe acute graft vs host disease after hematopoietic cell transplantation. Clinl Infect Dis. 2017;65(12):1984–1991.
  • Han L, Jin H, Zhou L, et al. Intestinal microbiota at engraftment influence acute graft-versus-host disease via the Treg/Th17 balance in allo-HSCT recipients. Front Immunol. 2018;9:669.
  • Han L, Zhao K, Li Y, et al. A gut microbiota score predicting acute graft‐versus‐host disease following myeloablative allogeneic hematopoietic stem cell transplantation. Am J Transplant. 2020;20(4):1014–1027.
  • Michonneau D, Latis E, Curis E, et al. Metabolomics analysis of human acute graft-versus-host disease reveals changes in host and microbiota-derived metabolites. Nat Commun. 2019;10(1): 5695–5695. DOI:10.1038/s41467-019-13498-3
  • Riwes M, Reddy P. Microbial metabolites and graft versus host disease. Am J Transplant. 2018;18(1):23–29.
  • Galloway-Peña JR, Peterson CB, Malik F, et al. Fecal microbiome, metabolites, and stem cell transplant outcomes: A single-center pilot study. In: editor. Open forum infectious diseases. US: Oxford University Press. 2019.
  • Swimm A, Giver CR, DeFilipp Z, et al. Indoles derived from intestinal microbiota act via type I interferon signaling to limit graft-versus-host disease. Blood, the Journal of the American Society of Hematology. 2018;132(23):2506–2519.
  • Weber D, Oefner PJ, Hiergeist A, et al. Low urinary indoxyl sulfate levels early after transplantation reflect a disrupted microbiome and are associated with poor outcome. Blood, the Journal of the American Society of Hematology. 2015;126(14):1723–1728.
  • Payen M, Nicolis I, Robin M, et al. Functional and phylogenetic alterations in gut microbiome are linked to graft-versus-host disease severity. Blood Adv. 2020;4(9):1824–1832.
  • Markey KA, Schluter J, Gomes AL, et al. Microbe-derived short chain fatty acids butyrate and propionate are associated with protection from chronic GVHD. Blood Journal.. 2020;blood:2019003369.
  • Li Q, Zhai Z, Xu X, et al. Decrease of CD4(+)CD25(+) regulatory T cells and TGF-beta at early immune reconstitution is associated to the onset and severity of graft-versus-host disease following allogeneic haematogenesis stem cell transplantation. Leuk Res. 2010 Sep;34(9):1158–1168.
  • Magenau JM, Qin X, Tawara I, et al. Frequency of CD4(+)CD25(hi)FOXP3(+) regulatory T cells has diagnostic and prognostic value as a biomarker for acute graft-versus-host-disease. Biol Blood Marrow Transplant. 2010 Jul;16(7):907–914.
  • Zorn E, Kim HT, Lee SJ, et al. Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood. 2005 Oct 15;106(8):2903–2911.
  • Matsuoka K, Kim HT, McDonough S, et al. Altered regulatory T cell homeostasis in patients with CD4+ lymphopenia following allogeneic hematopoietic stem cell transplantation. J Clin Invest. 2010 May;120(5):1479–1493.
  • Miura Y, Thoburn CJ, Bright EC, et al. Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood. 2004 Oct 1;104(7):2187–2193.
  • Budde H, Papert S, Maas JH, et al. Prediction of graft-versus-host disease: a biomarker panel based on lymphocytes and cytokines. Ann Hematol. 2017 Jul;96(7):1127–1133.
  • Huttunen P, Taskinen M, Siitonen S, et al. Impact of very early CD4(+)/CD8(+) T cell counts on the occurrence of acute graft-versus-host disease and NK cell counts on outcome after pediatric allogeneic hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2015 Mar;62(3):522–528.
  • He FC, Holtan SG. Biomarkers in graft-versus-host disease: from prediction and diagnosis to insights into complex graft/host interactions. Curr Hematol Malig Rep. 2018 Feb;13(1):44–52.
  • Greinix HT, Kuzmina Z, Weigl R, et al. CD19+CD21low B cells and CD4+CD45RA+CD31+ T cells correlate with first diagnosis of chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2015 Feb;21(2):250–258.
  • Ren HG, Adom D, Paczesny S. The search for drug-targetable diagnostic, prognostic and predictive biomarkers in chronic graft-versus-host disease. Expert Rev Clin Immunol. 2018 May;14(5):389–404.
  • Dander E, Balduzzi A, Zappa G, et al. Interleukin-17–producing T-helper cells as new potential player mediating graft-versus-host disease in patients undergoing allogeneic stem-cell transplantation. Transplantation. 2009;88(11):1261–1272.
  • Malard F, Bossard C, Brissot E, et al. Increased Th17/Treg ratio in chronic liver GVHD. Bone Marrow Transplant. 2014 Apr;49(4):539–544.
  • Forcade E, Paz K, Flynn R, et al. An activated Th17-prone T cell subset involved in chronic graft-versus-host disease sensitive to pharmacological inhibition. JCI Insight. 2017 Jun 15;2(12):12.
  • Li W, Liu L, Gomez A, et al. Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease. JCI Insight. 2016 May 5;1(6):6.
  • Forcade E, Kim HT, Cutler C, et al. Circulating T follicular helper cells with increased function during chronic graft-versus-host disease. Blood. 2016 May 19;127(20):2489–2497.
  • Chen YB, McDonough S, Hasserjian R, et al. Expression of CD30 in patients with acute graft-versus-host disease. Blood. 2012 Jul 19;120(3):691–696.
  • Huenecke S, Cappel C, Esser R, et al. Development of three different nk cell subpopulations during immune reconstitution after pediatric allogeneic hematopoietic stem cell transplantation: prognostic markers in gvHD and viral infections. Front Immunol. 2017;8:109.
  • Sarantopoulos S, Stevenson KE, Kim HT, et al. Altered B-cell homeostasis and excess BAFF in human chronic graft-versus-host disease. Blood. 2009 Apr 16;113(16):3865–3874.
  • Jacobson CA, Turki AT, McDonough SM, et al. Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation. Biol Blood Marrow Transplant. 2012 Apr;18(4):565–574.
  • Rozmus J, Kariminia A, Abdossamadi S, et al. Comprehensive B cell phenotyping profile for chronic graft-versus-host disease diagnosis. Biol Blood Marrow Transplant. 2019 Mar;25(3):451–458.
  • Stikvoort A, Chen Y, Radestad E, et al. Combining flow and mass cytometry in the search for biomarkers in chronic graft-versus-host disease. Front Immunol. 2017;8:717.
  • Kuzmina Z, Greinix HT, Weigl R, et al. Significant differences in B-cell subpopulations characterize patients with chronic graft-versus-host disease-associated dysgammaglobulinemia. Blood. 2011 Feb 17;117(7):2265–2274.
  • Kuzmina Z, Krenn K, Petkov V, et al. CD19(+)CD21(low) B cells and patients at risk for NIH-defined chronic graft-versus-host disease with bronchiolitis obliterans syndrome. Blood. 2013 Mar 7;121(10):1886–1895.
  • Greinix HT, Pohlreich D, Kouba M, et al. Elevated numbers of immature/transitional CD21- B lymphocytes and deficiency of memory CD27+ B cells identify patients with active chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2008 Feb;14(2):208–219.
  • Bohmann EM, Fehn U, Holler B, et al. Altered immune reconstitution of B and T cells precedes the onset of clinical symptoms of chronic graft-versus-host disease and is influenced by the type of onset. Ann Hematol. 2017 Feb;96(2):299–310.
  • Lawitschka A, Gueclue ED, Januszko A, et al. National institutes of health-defined chronic graft-vs.-host disease in pediatric hematopoietic stem cell transplantation patients correlates with parameters of long-term immune reconstitution. Front Immunol. 1879;2019:10.
  • Kuzmina Z, Greinix HT, Knobler R, et al. Proportions of immature CD19+CD21- B lymphocytes predict the response to extracorporeal photopheresis in patients with chronic graft-versus-host disease. Blood. 2009 Jul 16;114(3):744–746.
  • D’Orsogna LJ, Wright MP, Krueger RG, et al. Allogeneic hematopoietic stem cell transplantation recipients have defects of both switched and IgM memory B cells. Biol Blood Marrow Transplant. 2009 Jul;15(7):795–803.
  • Schultz KR, Kariminia A, Ng B, et al. Immune profile differences between chronic GVHD and late acute GVHD: results of the ABLE/PBMTC 1202 studies. Blood. 2020 Apr 9;135(15):1287–1298.
  • Lantz O, Bendelac A. An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8- T cells in mice and humans. J Exp Med. 1994 Sep 1;180(3):1097–1106.
  • Gumperz JE, Miyake S, Yamamura T, et al. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med. 2002 Mar 4;195(5):625–636.
  • Lan F, Zeng D, Higuchi M, et al. Host conditioning with total lymphoid irradiation and antithymocyte globulin prevents graft-versus-host disease: the role of CD1-reactive natural killer T cells. Biol Blood Marrow Transplant. 2003 Jun;9(6):355–363.
  • Leveson-Gower DB, Olson JA, Sega EI, et al. Low doses of natural killer T cells provide protection from acute graft-versus-host disease via an IL-4-dependent mechanism. Blood. 2011 Mar 17;117(11):3220–3229.
  • Pillai AB, George TI, Dutt S, et al. Host natural killer T cells induce an interleukin-4-dependent expansion of donor CD4+CD25+Foxp3+ T regulatory cells that protects against graft-versus-host disease. Blood. 2009 Apr 30;113(18):4458–4467.
  • Hashimoto D, Asakura S, Miyake S, et al. Stimulation of host NKT cells by synthetic glycolipid regulates acute graft-versus-host disease by inducing Th2 polarization of donor T cells. J Immunol. 2005 Jan 1;174(1):551–556.
  • Schneidawind D, Pierini A, Alvarez M, et al. CD4+ invariant natural killer T cells protect from murine GVHD lethality through expansion of donor CD4+CD25+FoxP3+ regulatory T cells. Blood. 2014 Nov 20;124(22):3320–3328.
  • Hongo D, Tang X, Dutt S, et al. Interactions between NKT cells and Tregs are required for tolerance to combined bone marrow and organ transplants. Blood. 2012 Feb 9;119(6):1581–1589.
  • Haraguchi K, Takahashi T, Hiruma K, et al. Recovery of Valpha24+ NKT cells after hematopoietic stem cell transplantation. Bone Marrow Transplant. 2004 Oct;34(7):595–602.
  • Rubio MT, Moreira-Teixeira L, Bachy E, et al. Early posttransplantation donor-derived invariant natural killer T-cell recovery predicts the occurrence of acute graft-versus-host disease and overall survival. Blood. 2012 Sep 6;120(10):2144–2154.
  • Chaidos A, Patterson S, Szydlo R, et al. Graft invariant natural killer T-cell dose predicts risk of acute graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Blood. 2012 May 24;119(21):5030–5036.
  • Malard F, Labopin M, Chevallier P, et al. Larger number of invariant natural killer T cells in PBSC allografts correlates with improved GVHD-free and progression-free survival. Blood. 2016 Apr 7;127(14):1828–1835.
  • Rubio MT, Bouillie M, Bouazza N, et al. Pre-transplant donor CD4(-) invariant NKT cell expansion capacity predicts the occurrence of acute graft-versus-host disease. Leukemia. 2017 Apr;31(4):903–912.
  • Luft T, Dietrich S, Falk C, et al. Steroid-refractory GVHD: T-cell attack within a vulnerable endothelial system. Blood. 2011 Aug 11;118(6):1685–1692.
  • Jiang S, Walker L, Afentoulis M, et al. Transplanted human bone marrow contributes to vascular endothelium. Proc Natl Acad Sci U S A. 2004 Nov 30;101(48):16891–16896.
  • Willemze AJ, Bakker AC, von Dem Borne PA, et al. The effect of graft-versus-host disease on skin endothelial and epithelial cell chimerism in stem-cell transplant recipients. Transplantation. 2009 Apr 15;87(7):1096–1101.
  • Penack O, Socie G. van den Brink MR. The importance of neovascularization and its inhibition for allogeneic hematopoietic stem cell transplantation. Blood. 2011 Apr 21;117(16):4181–4189.
  • Almici C, Skert C, Verardi R, et al. Changes in circulating endothelial cells count could become a valuable tool in the diagnostic definition of acute graft-versus-host disease. Transplantation. 2014 Oct 15;98(7):706–712.
  • Almici C, Skert C, Bruno B, et al. Circulating endothelial cell count: a reliable marker of endothelial damage in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant. 2017 Dec;52(12):1637–1642.
  • Almici C, Neva A, Skert C, et al. Counting circulating endothelial cells in allo-HSCT: an ad hoc designed polychromatic flowcytometry-based panel versus the CellSearch System. Sci Rep. 2019 Jan 14;9(1):87.
  • Tétreault N, De Guire V. miRNAs: their discovery, biogenesis and mechanism of action. Clin Biochem. 2013;46(10–11):842–845.
  • Tomuleasa C, Fuji S, Cucuianu A, et al. MicroRNAs as biomarkers for graft-versus-host disease following allogeneic stem cell transplantation. Ann Hematol. 2015;94(7):1081–1092.
  • Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour‐associated microRNAs in serum of patients with diffuse large B‐cell lymphoma. Br J Haematol. 2008;141(5):672–675.
  • Newmarch M, Kostantin E, Tsongalis G, et al. MicroRNAs in graft-versus-host disease: a review of the latest data. Bone Marrow Transplant. 2019;1–7.
  • Peltier D, Reddy P. Non-coding RNA mediated regulation of allogeneic T cell responses after hematopoietic transplantation. Front Immunol. 2018;9:1110.
  • Lee C-W, Wohlan K, Dallmann I, et al. miR-181a expression in donor T cells modulates graft-versus-host disease after allogeneic bone marrow transplantation. J Immunol. 2016;196(9):3927–3934.
  • Sang W, Zhang C, Zhang D, et al. MicroRNA‐181a, a potential diagnosis marker, alleviates acute graft versus host disease by regulating IFN‐γ production. Am J Hematol. 2015;90(11):998–1007.
  • Ward PA, Fattahi F, Bosmann M. New insights into molecular mechanisms of immune complex-induced injury in lung. Front Immunol. 2016;7:86.
  • Stickel N, Prinz G, Pfeifer D, et al. MiR-146a regulates the TRAF6/TNF-axis in donor T cells during GVHD. Blood, the Journal of the American Society of Hematology. 2014;124(16):2586–2595.
  • Alivernini S, Gremese E, McSharry C, et al. MicroRNA-155—at the critical interface of innate and adaptive immunity in arthritis. Front Immunol. 2018;8:1932.
  • Ranganathan P THE DISTILLERY.
  • Xie LN, Zhou F, Liu XM, et al. Serum micro RNA 155 is increased in patients with acute graft‐versus‐host disease. Clin Transplant. 2014;28(3):314–323.
  • Lendrem C, Greinix H, Dickinson A, et al. 2017.
  • Atarod S, Norden J, Bibby LA, et al. Differential microRNA expression levels in cutaneous acute graft-versus-host disease. Front Immunol. 2018;9:1485.
  • Xiao B, Wang Y, Li W, et al. Plasma microRNA signature as a noninvasive biomarker for acute graft-versus-host disease. Blood. 2013;122(19):3365–3375.
  • Crossland RE, Norden J, Collin M, et al. Urinary micrornas MiR-377, MiR-423, MiR-93 and MiR-199 as biomarkers for graft versus host disease. In: American society of hematology. DC:Washington; 2014.
  • Greinix H, Dickinson A, Crossland RE, et al. 2017.
  • Zhang C, Bai N, Huang W, et al. The predictive value of selected serum microRNAs for acute GVHD by TaqMan microRNA arrays. Ann Hematol. 2016;95(11):1833–1843.
  • Callari M, Tiberio P, De Cecco L, et al. Feasibility of circulating miRNA microarray analysis from archival plasma samples. Anal Biochem. 2013;437(2):123–125.
  • Mason TE, Ricks‐Santi L, Chen W, et al. Association of CD14 variant with prostate cancer in African American men. Prostate. 2010;70(3):262–269.
  • García-Silva S, Benito-Martín A, Sánchez-Redondo S, et al. Use of extracellular vesicles from lymphatic drainage as surrogate markers of melanoma progression and BRAFV600E mutation. J Exp Med. 2019;216(5):1061–1070.
  • Vagner T, Spinelli C, Minciacchi VR, et al. Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. J Extracell Vesicles. 2018;7(1):1505403.
  • Johnson A. Role of extracellular vesicles in development of antiandrogen resistance in prostate cancer. Tulane University; 2018.
  • Yang S, Li X. Recent advances in extracellular vesicles enriched with non-coding RNAs related to cancers. Genes Dis. 2018;5(1):36–42.
  • Atay S, Wilkey DW, Milhem M, et al. Insights into the proteome of gastrointestinal stromal tumors-derived exosomes reveals new potential diagnostic biomarkers. Mol Cell Proteomics. 2018;17(3):495–515.
  • Dourado MR, Korvala J, Åström P, et al. Extracellular vesicles derived from cancer-associated fibroblasts induce the migration and invasion of oral squamous cell carcinoma. J Extracell Vesicles. 2019;8(1):1578525.
  • Allenson K, Castillo J, San Lucas F, et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann Oncol. 2017;28(4):741–747.
  • Castillo J, Bernard V, San Lucas FA, et al. Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients. Ann Oncol. 2018 [2018 01 01];29(1):223–229.
  • Maas SLN, Breakefield XO, Weaver AM. Extracellular Vesicles: unique Intercellular Delivery Vehicles. Trends Cell Biol. 2017;27(3):172–188.
  • Yáñez-Mó M, Siljander PRM, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4(1): 27066–27066. DOI:10.3402/jev.v4.27066
  • Wu Q, Chen H, Fang J, et al. Elevated Fas/FasL system and endothelial cell microparticles are involved in endothelial damage in acute graft-versus-host disease: a clinical analysis. Leuk Res. 2012;36(3):275–280.
  • Lia G, Brunello L, Bruno S, et al. Extracellular vesicles as potential biomarkers of acute graft-vs-host disease. Leukemia. 2018;32(3):765–773.
  • Brunello L, Lia G, Bruno S, et al. Biomarkers of acute graft-versus-host disease: surface antigens and micro RNAs in extracellular vesicles. Biol Blood Marrow Transplant. 2019;25(3):S232.
  • Zhang R, Wang X, Hong M, et al. Endothelial microparticles delivering microRNA-155 into T lymphocytes are involved in the initiation of acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. Oncotarget. 2017;8(14):23360.
  • Luther SA, Cyster JG. Chemokines as regulators of T cell differentiation. Nat Immunol. 2001 Feb;2(2):102–107.
  • Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol. 2001 Feb;2(2):123–128.
  • Ali AM, DiPersio JF, Schroeder MA. The role of biomarkers in the diagnosis and risk stratification of acute graft-versus-host disease: a systematic review. Biol Blood Marrow Transplant. 2016 Sep;22(9):1552–1564.
  • August KJ, Chiang KY, Bostick RM, et al. Biomarkers of immune activation to screen for severe, acute GVHD. Bone Marrow Transplant. 2011 Apr;46(4):601–604.
  • Busca A, Locatelli F, Marmont F, et al. Recombinant human soluble tumor necrosis factor receptor fusion protein as treatment for steroid refractory graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. Am J Hematol. 2007 Jan;82(1):45–52.
  • Levine JE, Paczesny S, Mineishi S, et al. Etanercept plus methylprednisolone as initial therapy for acute graft-versus-host disease. Blood. 2008 Feb 15;111(4):2470–2475.
  • Malard F, Huang X-J, Sim JPY. Treatment and unmet needs in steroid-refractory acute graft-versus-host disease.Leukemia. 2020 [2020 05 01];34(5):1229–1240.
  • Choi SW, Kitko CL, Braun T, et al. Change in plasma tumor necrosis factor receptor 1 levels in the first week after myeloablative allogeneic transplantation correlates with severity and incidence of GVHD and survival. Blood. 2008 Aug 15;112(4):1539–1542.
  • Kitko CL, Paczesny S, Yanik G, et al. Plasma elevations of tumor necrosis factor-receptor-1 at day 7 postallogeneic transplant correlate with graft-versus-host disease severity and overall survival in pediatric patients. Biol Blood Marrow Transplant. 2008 Jul;14(7):759–765.
  • Hill GR, Teshima T, Rebel VI, et al. The p55 TNF-alpha receptor plays a critical role in T cell alloreactivity. J Immunol. 2000 Jan 15;164(2):656–663.
  • Liao W, Lin JX, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity. 2013 Jan 24;38(1):13–25.
  • Zhang L, Yu J, Wei W. Advance in targeted immunotherapy for graft-versus-host disease. Front Immunol. 2018;9:1087.
  • Miyamoto T, Akashi K, Hayashi S, et al. Serum concentration of the soluble interleukin-2 receptor for monitoring acute graft-versus-host disease. Bone Marrow Transplant. 1996 Feb;17(2):185–190.
  • Foley R, Couban S, Walker I, et al. Monitoring soluble interleukin-2 receptor levels in related and unrelated donor allogenic bone marrow transplantation. Bone Marrow Transplant. 1998 Apr;21(8):769–773.
  • Tedesco D, Haragsim L. Cyclosporine: a review. 2012; 2012. Journal of Transplantation..
  • Griesenauer B, Paczesny S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front Immunol. 2017;8:475.
  • Castor MG, Pinho V, Teixeira MM. The role of chemokines in mediating graft versus host disease: opportunities for novel therapeutics. Front Pharmacol. 2012;3:23.
  • Murai M, Yoneyama H, Harada A, et al. Active participation of CCR5(+)CD8(+) T lymphocytes in the pathogenesis of liver injury in graft-versus-host disease. J Clin Invest. 1999 Jul;104(1):49–57.
  • Palmer LA, Sale GE, Balogun JI, et al. Chemokine receptor CCR5 mediates alloimmune responses in graft-versus-host disease. Biol Blood Marrow Transplant. 2010 Mar;16(3):311–319.
  • Hutter G, Neumann M, Nowak D, et al. The effect of the CCR5-delta32 deletion on global gene expression considering immune response and inflammation. J Inflamm (Lond).. 2011 Oct 26;8(1):29.
  • Bogunia-Kubik K, Duda D, Suchnicki K, et al. CCR5 deletion mutation and its association with the risk of developing acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Haematologica. 2006 Dec;91(12):1628–1634.
  • Ma Q, Gooley TA, Storb RF. CCR5 expression on cells from HLA-matched unrelated marrow donors and graft-versus-host disease. Biol Blood Marrow Transplant. 2010 Jan;16(1):132–133.
  • Moy RH, Huffman AP, Richman LP, et al. Clinical and immunologic impact of CCR5 blockade in graft-versus-host disease prophylaxis. Blood. 2017 Feb 16;129(7):906–916.
  • Reshef R, Ganetsky A, Acosta EP, et al. Extended CCR5 blockade for graft-versus-host disease prophylaxis improves outcomes of reduced-intensity unrelated donor hematopoietic cell transplantation: a phase II clinical trial. Biol Blood Marrow Transplant. 2019 Mar;25(3):515–521.
  • Ahmed SS, Wang XN, Norden J, et al. Identification and validation of biomarkers associated with acute and chronic graft versus host disease. Bone Marrow Transplant. 2015;50(12):1563–1571.
  • Chen YB, Cutler CS. Biomarkers for acute GVHD: can we predict the unpredictable? Bone Marrow Transplant. 2013 Jun;48(6):755–760.
  • Kitko CL, Levine JE, Storer BE, et al. Plasma CXCL9 elevations correlate with chronic GVHD diagnosis. Blood. 2014;123(5):786–793.
  • Yu J, Storer BE, Kushekhar K, et al. Biomarker panel for chronic graft-versus-host disease. J Clin Oncol. 2016;34(22):2583.
  • Ahmed S, Wang X, Norden J, et al. Erratum: identification and validation of biomarkers associated with acute and chronic graft versus host disease. Bone Marrow Transplant. 2016;51(6): 890–890. 10.1038/bmt.2016.125
  • Reichenbach DK, Schwarze V, Matta BM, et al. The IL-33/ST2 axis augments effector T-cell responses during acute GVHD. Blood, the Journal of the American Society of Hematology. 2015;125(20):3183–3192.
  • Barrett AJ. Transplant biomarkers ready for the clinic? Blood. 2017;129(2):137–139.
  • Westekemper H, Meller S, Citak S, et al. Differential chemokine expression in chronic GVHD of the conjunctiva. Bone Marrow Transplant. 2010;45(8):1340–1346.
  • Fujii H, Cuvelier G, She K, et al. Biomarkers in newly diagnosed pediatric-extensive chronic graft-versus-host disease: a report from the Children’s Oncology Group. Blood, the Journal of the American Society of Hematology. 2008;111(6):3276–3285.
  • Pratt L, Liu Y, Ugarte-Torres A, et al. IL15 levels on day 7 after hematopoietic cell transplantation predict chronic GVHD. Bone Marrow Transplant. 2013;48(5):722–728.
  • Skert C, Damiani D, Michelutti A, et al. Kinetics of Th1/Th2 cytokines and lymphocyte subsets to predict chronic GVHD after allo-SCT: results of a prospective study. Bone Marrow Transplant. 2009 Dec;44(11):729–737.
  • Kobayashi S, Imamura M, Hashino S, et al. Clinical relevance of serum soluble interleukin-2 receptor levels in acute and chronic graft-versus-host disease. Leuk Lymphoma. 1997;28(1–2):159–169.
  • Zhao X-S, Huang X-J. Seeking biomarkers for acute graft-versus-host disease: where we are and where we are heading? Biomark Res. 2019;7(1):1–10.
  • Paczesny S, Krijanovski OI, Braun TM, et al. A biomarker panel for acute graft-versus-host disease. 2009; 113(2): 273–278. Blood, The Journal of the American Society of Hematology.
  • Harris AC, Ferrara JL, Braun TM, et al. Plasma biomarkers of lower gastrointestinal and liver acute GVHD. Blood. 2012 Mar 22;119(12):2960–2963.
  • Lugt PR, Chin A, Zhang Q, et al. Regenerating islet-derived 3 alpha is a biomarker of gastrointestinal. 2011.
  • Paczesny S, Braun TM, Levine JE, et al. Elafin Is a Biomarker of Graft-Versus-Host Disease of the Skin. Sci Transl Med. 2010;2(13):13ra2.
  • Ferrara JL, Harris AC, Greenson JK, et al. Regenerating islet-derived 3-alpha is a biomarker of gastrointestinal graft-versus-host disease. Blood. 2011 Dec 15;118(25):6702–6708.
  • Levine JE, Logan BR, Wu J, et al. Acute graft-versus-host disease biomarkers measured during therapy can predict treatment outcomes: a Blood and Marrow Transplant Clinical Trials Network study. Blood, The Journal of the American Society of Hematology. 2012;119(16):3854–3860.
  • Ponce DM, Hilden P, Mumaw C, et al. High day 28 ST2 levels predict for acute graft-versus-host disease and transplant-related mortality after cord blood transplantation. Blood. 2015 Jan 1;125(1):199–205.
  • Vander Lugt MT, Braun TM, Hanash S, et al. ST2 as a marker for risk of therapy-resistant graft-versus-host disease and death. N Engl J Med. 2013 Aug 8;369(6):529–539.
  • Hartwell MJ, Ozbek U, Holler E, et al. An early-biomarker algorithm predicts lethal graft-versus-host disease and survival. JCI Insight. 2017 Feb 9;2(3):e89798.
  • Solán L, Kwon M, Carbonell D, et al. ST2 and REG3α as predictive biomarkers after haploidentical stem cell transplantation using post-transplantation high-dose cyclophosphamide. Front Immunol. 2019;10:2338.
  • Srinagesh HK, Ferrara JLM. MAGIC biomarkers of acute graft-versus-host disease: biology and clinical application.Best Pract Res Clin Haematol. 2019 [2019 12 01];32(4):101111.
  • Levine JE, Braun TM, Harris AC, et al. A prognostic score for acute graft-versus-host disease based on biomarkers: a multicentre study. Lancet Haematol. 2015;2(1):e21–e29.
  • McDonald GB, Tabellini L, Storer BE, et al. Plasma biomarkers of acute GVHD and nonrelapse mortality: predictive value of measurements before GVHD onset and treatment. Blood, the Journal of the American Society of Hematology. 2015;126(1):113–120.
  • Abu Zaid M, Wu J, Wu C, et al. Plasma biomarkers of risk for death in a multicenter phase 3 trial with uniform transplant characteristics post–allogeneic HCT. Blood, the Journal of the American Society of Hematology. 2017;129(2):162–170.
  • Etra A, Gergoudis S, Morales G, et al. Comparison of GVHD biomarker algorithms for predicting lethal GVHD and non-relapse mortality. Biol Blood Marrow Transplant. 2019;25(3):S53–S54.
  • Weissinger E, Metzger J, Dobbelstein C, et al. Proteomic peptide profiling for preemptive diagnosis of acute graft-versus-host disease after allogeneic stem cell transplantation. Leukemia. 2014;28(4):842–852.
  • Devic I, Shi M, Schubert MM, et al. Proteomic analysis of saliva from patients with oral chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2014;20(7):1048–1055.
  • Chiusolo P, Giammarco S, Fanali C, et al. Salivary proteomic analysis and acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19(6):888–892.
  • Kennedy GA, Varelias A, Vuckovic S, et al. Addition of interleukin-6 inhibition with tocilizumab to standard graft-versus-host disease prophylaxis after allogeneic stem-cell transplantation: a phase 1/2 trial. Lancet Oncol. 2014 Dec;15(13):1451–1459.
  • Mohamed AJ, Yu L, Bäckesjö CM, et al. Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev. 2009 Mar;228(1):58–73.
  • Dubovsky JA, Beckwith KA, Natarajan G, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013 Oct 10;122(15):2539–2549.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.