0
Views
0
CrossRef citations to date
0
Altmetric
Review

Applications of artificial intelligence to myeloproliferative neoplasms: a narrative review

, , , , &
Received 23 Apr 2024, Accepted 05 Aug 2024, Accepted author version posted online: 08 Aug 2024
Accepted author version

REFERENCES

  • Nangalia J, Green AR Myeloproliferative neoplasms: from origins to outcomes. Blood. 2017 Dec 7;130(23):2475–2483.10.1182/blood-2017-06-782037
  • Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022 Jul;36(7):1703–1719.
  • Arber DA, Orazi A, Hasserjian RP, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022 Sep 15;140(11):1200–1228.10.1182/blood.2022015850
  • Thiele J, Kvasnicka HM, Mullauer L, et al. Essential thrombocythemia versus early primary myelofibrosis: a multicenter study to validate the WHO classification. Blood. 2011 May 26;117(21):5710–5718.10.1182/blood-2010-07-293761
  • Srisuwananukorn A, Salama ME, Pearson AT. Deep learning applications in visual data for benign and malignant hematologic conditions: a systematic review and visual glossary. Haematologica. 2023-01-26;108(8):1993–2010.
  • Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System2016 [cited arXiv:1603.02754 p.]. DOI: 10.48550/arXiv.1603.02754
  • He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition2015 [cited arXiv:1512.03385 p.]. DOI:10.48550/arXiv.1512.03385
  • Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T. Analyzing and Improving the Image Quality of StyleGAN2019 [cited arXiv:1912.04958 p.]. DOI: 10.48550/arXiv.1912.04958
  • OpenAI, Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, et al. GPT-4 Technical Report2023 [cited arXiv:2303.08774 p.]. DOI:10.48550/arXiv.2303.08774
  • Dolezal JM, Wolk R, Hieromnimon HM, Howard FM, Srisuwananukorn A, Karpeyev D, et al. Deep Learning Generates Synthetic Cancer Histology for Explainability and Education2022 [cited arXiv:2211.06522 p.]. https://ui.adsabs.harvard.edu/abs/2022arXiv221106522D
  • Singhal K, Azizi S, Tu T, Mahdavi SS, Wei J, Chung HW, et al. Large language models encode clinical knowledge. Nature. 2023 2023-08-03;620(7972):172–180.
  • Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices: U.S. Food & Drug Administration; 2023 12 6; cited 2024 3/25/]. Available from: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
  • da Silva LM, Pereira EM, Salles PG, Godrich R, Ceballos R, Kunz JD, et al. Independent real-world application of a clinical-grade automated prostate cancer detection system. J Pathol. 2021 Jun;254(2):147–158.
  • Sirinukunwattana K, Aberdeen A, Theissen H, Sousos N, Psaila B, Mead AJ, et al. Artificial intelligence-based morphological fingerprinting of megakaryocytes: a new tool for assessing disease in MPN patients. Blood Adv. 2020 Jul 28;4(14):3284–3294.
  • Ryou H, Sirinukunwattana K, Aberdeen A, Grindstaff G, Stolz BJ, Byrne H, et al. Continuous Indexing of Fibrosis (CIF): improving the assessment and classification of MPN patients. Leukemia. 2023 2023-02-01;37(2):348–358.
  • Srisuwananukorn A, Loscocco GG, Kuykendall AT, et al. Interpretable Artificial Intelligence (AI) Differentiates Prefibrotic Primary Myelofibrosis (prePMF) from Essential Thrombocythemia (ET): A Multi-Center Study of a New Clinical Decision Support Tool. Blood. 2023 Nov 2;142:901. 10.1182/blood-2023-173877 Supplement 1
  • Kimura K, Ai T, Horiuchi Y, et al. Automated diagnostic support system with deep learning algorithms for distinction of Philadelphia chromosome-negative myeloproliferative neoplasms using peripheral blood specimen. Sci Rep. 2021 Feb 9;11(1):3367.10.1038/s41598-021-82826-9
  • Tefferi A, Cervantes F, Mesa R, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood. 2013 Aug 22;122(8):1395–1398.10.1182/blood-2013-03-488098
  • Moyo TK, Kishtagari A, Villaume MT, et al. PI3K Inhibition Restores and Amplifies Response to Ruxolitinib in Patients with Myelofibrosis. Clin Cancer Res. 2023 Jul 5;29(13):2375–2384. 10.1158/1078-0432.CCR-22-3192
  • Yang Y, Tang Y, Gao R, et al. Validation and estimation of spleen volume via computer-assisted segmentation on clinically acquired CT scans. J Med Imaging (Bellingham). 2021 Jan;8(1):014004. 10.1117/1.JMI.8.1.014004
  • Krichevsky S, Abu-Zeinah G, Erdos K, et al. Using Machine Learning to Predict Near-Term Thrombosis Risk in Patients with Polycythemia Vera. Blood. 2023 Nov 2;142(Supplement 1):3186–3186.10.1182/blood-2023-190684
  • Verstovsek S, Krečak I, Heidel FH, De Stefano V, Bryan K, Zuurman MW, et al. Identifying Patients with Polycythemia Vera at Risk of Thrombosis after Hydroxyurea Initiation: The Polycythemia Vera—Advanced Integrated Models (PV-AIM) Project. Biomedicines. 2023 2023-07-07;11(7):1925.
  • Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009 Mar 26;113(13):2895–2901.10.1182/blood-2008-07-170449
  • Passamonti F, Giorgino T, Mora B, et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia. 2017 Dec;31(12):2726–2731.10.1038/leu.2017.169
  • Kroger N, Bacigalupo A, Barbui T, et al. Indication and management of allogeneic haematopoietic stem-cell transplantation in myelofibrosis: updated recommendations by the EBMT/ELN International Working Group. Lancet Haematol. 2024 Jan;11(1):e62–e74. 10.1016/S2352-3026(23)00305-8
  • Mosquera-Orgueira A, Perez-Encinas M, Hernandez-Sanchez A, Gonzalez-Martinez T, Arellano-Rodrigo E, Martinez-Elicegui J, et al. Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis. Hemasphere. 2023 Jan;7(1):e818. doi: 10.1097/HS9.0000000000000818.
  • Poore GD, Kopylova E, Zhu Q, et al. RETRACTED ARTICLE: Microbiome analyses of blood and tissues suggest cancerdiagnostic approach. Nature. 2020 Mar;579(7800):567–574. 10.1038/s41586-020-2095-1
  • Woerner J, Huang Y, Hutter S, et al. Circulating microbial content in myeloid malignancy patients is associated with disease subtypes and patient outcomes. Nat Commun. 2022 Feb 24;13(1):1038.10.1038/s41467-022-28678-x
  • Guleken Z, Ceylan Z, Aday A, Bayrak AG, Hindilerden IY, Nalcaci M, et al. FTIR- based serum structure analysis in molecular diagnostics of essential thrombocythemia disease. J Photochem Photobiol B. 2023 Aug;245:112734.
  • Guleken Z, Ceylan Z, Aday A, Bayrak AG, Hindilerden IY, Nalcaci M, et al. Detection of primary myelofibrosis in blood serum via Raman spectroscopy assisted by machine learning approaches; correlation with clinical diagnosis. Nanomedicine. 2023 Sep;53:102706.
  • Guleken Z, Ceylan Z, Aday A, Bayrak AG, Hindilerden IY, Nalcaci M, et al. Application of Fourier Transform InfraRed spectroscopy of machine learning with Support Vector Machine and principal components analysis to detect biochemical changes in dried serum of patients with primary myelofibrosis. Biochim Biophys Acta Gen Subj. 2023 Oct;1867(10):130438.
  • Shen Z, Du W, Perkins C, Fechter L, Natu V, Maecker H, et al. Platelet transcriptome identifies progressive markers and potential therapeutic targets in chronic myeloproliferative neoplasms. Cell Rep Med. 2021 Oct 19;2(10):100425.
  • Duminuco A, Torre E, Palumbo GA, et al. A Journey Through JAK Inhibitors for the Treatment of Myeloproliferative Diseases. Curr Hematol Malig Rep. 2023 Oct;18(5):176–189.10.1007/s11899-023-00702-x
  • Passamonti F, Mora B. Myelofibrosis. Blood. 2023 Apr 20;141(16):1954–1970.
  • Wildschut MHE, Mena J, Dordelmann C, et al. Proteogenetic drug response profiling elucidates targetable vulnerabilities of myelofibrosis. Nat Commun. 2023 Oct 12;14(1):6414.10.1038/s41467-023-42101-z
  • Belenahalli Shekarappa S, Kandagalla S, Lee J Development of machine learning models based on molecular fingerprints for selection of small molecule inhibitors against JAK2 protein. J Comput Chem. 2023 Jun 15;44(16):1493–1504.10.1002/jcc.27103
  • Yang M, Tao B, Chen C, et al. Machine Learning Models Based on Molecular Fingerprints and an Extreme Gradient Boosting Method Lead to the Discovery of JAK2 Inhibitors. J Chem Inf Model. 2019 Dec 23;59(12):5002–5012. 10.1021/acs.jcim.9b00798
  • Fu JT, Sholle E, Krichevsky S, et al. Extracting and classifying diagnosis dates from clinical notes: A case study. J Biomed Inform. 2020 Oct;110:103569. 10.1016/j.jbi.2020.103569
  • Incyte Launches The Unseen Journey to Elevate the Hidden Impact of Myeloproliferative Neoplasms (MPNs) on Patients’ Lives through Generative AI [Internet]. Business Wire; 2024 2 29. Available from: https://www.businesswire.com/news/home/20240229692531/en/
  • Sounderajah V, Ashrafian H, Golub RM, et al. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open. 2021 Jun 28;11(6):e047709.10.1136/bmjopen-2020-047709
  • Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open. 2021 2021-07-01;11(7):e048008.
  • Cruz Rivera S, Liu X, Chan AW, Denniston AK, Calvert MJ, Spirit AI, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Nat Med. 2020 Sep;26(9):1351–1363.
  • Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK, Spirit AI, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med. 2020 Sep;26(9):1364–1374.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.