518
Views
8
CrossRef citations to date
0
Altmetric
Review

Luminally expressed gastrointestinal biomarkers

, , , , &
Pages 1119-1134 | Received 10 Jan 2017, Accepted 25 Aug 2017, Published online: 14 Sep 2017

References

  • Keku TO, Dulal S, Deveaux A, et al. The gastrointestinal microbiota and colorectal cancer. Am J Physiol Gastrointest Liver Physiol. 2015 Mar;308(5):G351–G363.
  • Eckburg PB, Bik EM, Bernstein CN. Diversity of the Human Intestinal Microbial Flora, Science. 2005;308(5728):1635–1638.
  • Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.
  • Poullis A, Foster R, Northfield TC, et al. Faecal markers in the assessment of activity in inflammatory bowel disease. Aliment Pharmacol Ther. 2002 Apr;16(4):675–681.
  • D’Incà R, Dal Pont E, Di Leo V, et al. Calprotectin and lactoferrin in the assessment of intestinal inflammation and organic disease. Int J Colorectal Dis. 2007;22(4):429–437.
  • Langhorst J, Elsenbruch S, Koelzer J, et al. Noninvasive markers in the assessment of intestinal inflammation in inflammatory bowel diseases: performance of fecal lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices. Am J Gastroenterol. 2008;103(1):162–169.
  • Bridges RB, Fu MC, Rehm SR. Increased neutrophil myeloperoxidase activity associated with cigarette smoking. Eur J Respir Dis. 1985 Aug;67(2):84–93.
  • Foell D, Wittkowski H, Roth J. Monitoring disease activity by stool analyses: from occult blood to molecular markers of intestinal inflammation and damage. Gut. 2009 Jun;58(6):859–868.
  • Ekberg-Jansson A, Andersson B, Bake B. Neutrophil-associated activation markers in healthy smokers relates to a fall in DLCO and to emphysematous changes on high resolution CT. Respir Med. 2001;95(5):363–373.
  • Mosli MH, Zou G, Garg SK, et al. C-reactive protein, fecal calprotectin, and stool lactoferrin for detection of endoscopic activity in symptomatic inflammatory bowel disease patients: a systematic review and meta-analysis. Am J Gastroenterol. 2015 Jun;110(6):802–819.
  • Ekberg-Jansson A, Andersson B, Bake B, et al. Neutrophil-associated activation markers in healthy smokers relates to a fall in DLCO and to emphysematous changes on high resolution CT. Respir Med. 2001 May;95(5):363–373.
  • Vermeire S, Van Assche G, Rutgeerts P. Laboratory markers in IBD: useful, magic, or unnecessary toys? Gut. 2006;55(3):426–431.
  • Costa F, Mumolo MG, Bellini M, et al. Role of faecal calprotectin as non-invasive marker of intestinal inflammation. Dig Liver Dis. 2003;35(9):642–647.
  • Sherwood RA. Faecal markers of gastrointestinal inflammation. J Clin Pathol. 2012 Nov;65(11):981–985.
  • Waugh N, Cummins E, Royle P. Faecal calprotectin testing for differentiating amongst inflammatory and non-inflammatory bowel diseases: systematic review and economic evaluation. Health Technol Assess. (Rockv). 2013;17(55).
  • Gisbert JP, McNicholl AG. Questions and answers on the role of faecal calprotectin as a biological marker in inflammatory bowel disease. Dig Liver Dis. 2009 Jan;41(1):56–66.
  • Henderson P, Anderson NH, Wilson DC. The diagnostic accuracy of fecal calprotectin during the investigation of suspected pediatric inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol. 2014 May;109(5):637–645.
  • Schoepfer AM, Beglinger C, Straumann A, et al. Fecal calprotectin correlates more closely with the Simple Endoscopic Score for Crohn’s disease (SES-CD) than CRP, blood leukocytes, and the CDAI. Am J Gastroenterol 2010 Jan;105(1):162–169.
  • Schoepfer AM, Beglinger C, Straumann A.Fecal calprotectin more accurately reflects endoscopic activity of ulcerative colitis than the lichtiger index, C-reactive protein, platelets, hemoglobin, and blood leukocytes. Inflamm Bowel Dis. 2013 Feb;19(2):332–341.
  • Lobatón T, López-García A, Rodríguez-Moranta F, et al. A new rapid test for fecal calprotectin predicts endoscopic remission and postoperative recurrence in Crohn’s disease. J Crohn’s Colitis. 2013 Dec;7(12):e641–e651.
  • Sipponen T, Savilahti E, Kolho K-L, et al. Crohnʼs disease activity assessed by fecal calprotectin and lactoferrin: correlation with Crohnʼs disease activity index and endoscopic findings. Inflamm Bowel Dis. 2008 Jan;14(1):40–46.
  • Røseth AG, Aadland E, Jahnsen J, et al. Assessment of disease activity in ulcerative colitis by faecal calprotectin, a novel granulocyte marker protein. Digestion. 1997 Feb;58(2):176–180.
  • Røseth AG, Aadland E, Grzyb K. Normalization of faecal calprotectin: a predictor of mucosal healing in patients with inflammatory bowel disease. Scand J Gastroenterol. 2004 Jan;39(10):1017–1020.
  • Sipponen T, Björkesten C-GA, Färkkilä M, et al. Faecal calprotectin and lactoferrin are reliable surrogate markers of endoscopic response during Crohn’s disease treatment. Scand J Gastroenterol. 2010 Mar;45(3):325–331.
  • van Rheenen PF, Van de Vijver E, Fidler V. Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: diagnostic meta-analysis. BMJ. 2010;341:c3369.
  • Lewis JD. The utility of biomarkers in the diagnosis and therapy of inflammatory bowel disease. Gastroenterology. 2011;140(6):1817–1826.
  • Mao R, Xiao Y-L, Gao X, et al. Fecal calprotectin in predicting relapse of inflammatory bowel diseases: a meta-analysis of prospective studies. Inflamm Bowel Dis. 2012 Oct;18(10):1894–1899.
  • von Roon AC, Karamountzos L, Purkayastha S, et al. Diagnostic precision of fecal calprotectin for inflammatory bowel disease and colorectal malignancy. Am J Gastroenterol. 2007 Apr;102(4):803–813.
  • Foell D, Kucharzik T, Kraft M. Neutrophil derived human S100A12 (EN-RAGE) is strongly expressed during chronic active inflammatory bowel disease. Gut. 2003;52(6):847–853.
  • Kaiser T, Langhorst J, Wittkowski H. Faecal S100A12 as a non-invasive marker distinguishing inflammatory bowel disease from irritable bowel syndrome. Gut. 2007;56(1458–3288):1706–1713. Electronic.
  • Derikx JP, Luyer MD, Heineman E, et al. Non-invasive markers of gut wall integrity in health and disease. World J Gastroenterol. 2010;16(42):5272–5279.
  • Holmes JH, Lieberman JM, Probert CB, et al. Elevated intestinal fatty acid binding protein and gastrointestinal complications following cardiopulmonary bypass: a preliminary analysis. J Surg Res. 2001;100(2):192–196.
  • de Haan JJ, Lubbers T, Derikx JP, et al. Rapid development of intestinal cell damage following severe trauma: a prospective observational cohort study. Crit Care. 2009;13(3):R86.
  • Calafat M, Cabré E, Mañosa M, et al. High within-day variability of fecal calprotectin levels in patients with active ulcerative colitis: what is the best timing for stool sampling?. Inflamm Bowel Dis 2015;21(5):1072–1076.
  • Naismith GD, Smith LA, Barry SJE, et al. A prospective single-centre evaluation of the intra-individual variability of faecal calprotectin in quiescent Crohn’s disease. Aliment Pharmacol Ther. 2013;37(6):613–621.
  • Husebye E, Tøn H, Johne B. Biological variability of fecal calprotectin in patients referred for colonoscopy without colonic inflammation or neoplasm. Am J Gastroenterol. 2001;96(9 SUPPL):2683–2687.
  • Robertson DJ, Imperiale TF. Stool testing for colorectal cancer screening. Gastroenterology. 2015 Oct;149(5):1286–1293.
  • Mowat C, Cole A, Windsor A. Guidelines for the management of inflammatory bowel disease in adults. Gut. 2011;60(5):571–607.
  • European Crohn’s and Colitis Organisation. Published ECCO guidelines. 2017.
  • Tibble JA, Sigthorsson G, Foster R, et al. High prevalence of NSAID enteropathy as shown by a simple faecal test. Gut. 1999 Sep;45(3):362–366.
  • Shiotani A, Tarumi K-I, Honda K, et al. Application of fecal hemoglobin – haptoglobin complex testing for small bowel lesions. Scand J Gastroenterol. 2014;49:539–544.
  • Burch JA, Soares-Weiser K, St John DJB, et al. Diagnostic accuracy of faecal occult blood tests used in screening for colorectal cancer: a systematic review. J Med Screen. 2007 Sep;14(3):132–137.
  • Hewitson P, Glasziou P, Watson E, et al. Cochrane systematic review of colorectal cancer screening using the fecal occult blood test (Hemoccult): an update. Am J Gastroenterol. 2008 Jun;103(6):1541–1549.
  • Holme Ø, Bretthauer M, Fretheim A, et al. Flexible sigmoidoscopy versus faecal occult blood testing for colorectal cancer screening in asymptomatic individuals. In: Holme Ø, editor. Cochrane database of systematic reviews. Chichester: John Wiley & Sons, Ltd; 2013.
  • Zhang MQ, Lin F, Hui P, et al. Expression of mucins, SIMA, villin, and CDX2 in small-intestinal adenocarcinoma. Am J Clin Pathol. 2007;128(5):808–816.
  • Ouyang DL, Chen JJ, Getzenberg RH, et al. Noninvasive testing for colorectal cancer: a review. Am J Gastroenterol. 2005 Jun;100(6):1393–1403.
  • Kufe DW. Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer. 2009 Dec;9(12):874–885.
  • Sheng YH, Hasnain SZ, Florin THJ, et al. Mucins in inflammatory bowel diseases and colorectal cancer. J Gastroenterol Hepatol. 2012 Jan;27(1):28–38.
  • Hundt S, Haug U, Brenner H. Blood markers for early detection of colorectal cancer: a systematic review. Cancer Epidemiol Prev Biomarkers. 2007;16(10).
  • Kopylov U, Yung DE, Engel T. Fecal calprotectin for the prediction of small-bowel Crohn’s disease by capsule endoscopy. Eur J Gastroenterol Hepatol. 2016;28(10):1137–1144.
  • Farkas K, Sarodi Z, Balint A, et al. The diagnostic value of a new fecal marker, matrix metalloprotease-9, in different types of inflammatory bowel diseases. J Crohn’s Colitis. 2015 Mar;9(3):231–237.
  • Jiang W, Li X. Molecular analysis of inflammatory bowel disease: clinically useful tools for diagnosis, response prediction, and monitoring of targeted therapy. Mol Diagn Ther. 2015 Jun;19(3):141–158.
  • Buisson A, Vazeille E, Minet-Quinard R, et al. Faecal chitinase 3-like 1 is a reliable marker as accurate as faecal calprotectin in detecting endoscopic activity in adult patients with inflammatory bowel diseases. Aliment Pharmacol Ther. 2016 May;43(10):1069–1079.
  • Nancey S, Boschetti G, Moussata D, et al. Neopterin is a novel reliable fecal marker as accurate as calprotectin for predicting endoscopic disease activity in patients with inflammatory bowel diseases. Inflamm Bowel Dis. 2013 Apr;19(5):1043–1052.
  • Brenner H, Tao S. Superior diagnostic performance of faecal immunochemical tests for haemoglobin in a head-to-head comparison with guaiac based faecal occult blood test among 2235 participants of screening colonoscopy. Eur J Cancer. 2013;49(14):3049–3054.
  • Hol L, Van Leerdam ME, Van Ballegooijen M, et al. Screening for colorectal cancer: randomised trial comparing guaiac-based and immunochemical faecal occult blood testing and flexible sigmoidoscopy. Gut. 2010;59(1):62–68.
  • Vart G, Banzi R, Minozzi S. Comparing participation rates between immunochemical and guaiac faecal occult blood tests: a systematic review and meta-analysis. Prev Med (Baltim). 2012;55:87–92.
  • Zorzi M, Fedeli U, Schievano E, et al. Impact on colorectal cancer mortality of screening programmes based on the faecal immunochemical test. Gut. 2015;64(5):784–790.
  • Chiba H, Sekiguchi M, Ito T, et al. Is it worthwhile to perform capsule endoscopy for asymptomatic patients with positive immunochemical faecal occult blood test? Dig Dis Sci. 2011;56:3459–3462.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.
  • Slaby O, Svoboda M, Michalek J, et al. MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer. 2009;8:102.
  • Volinia S, Calin GA, Liu C-G, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. PNAS. 2006;103(7):2257–2261.
  • Kalla R, Ventham NT, Kennedy NA, et al. MicroRNAs: new players in IBD. Gut. 2015;64(3):504–517.
  • Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008 Jul;105(30):10513–10518.
  • Wu, CW, Ng SC, Dong Y. Identification of microrna-135b in stool as a potential noninvasive biomarker for colorectal cancer and adenoma. Clin Cancer Res. 2014;20(11):2994–3002.
  • Meng W, McElroy JP, Volinia S, et al. Comparison of MicroRNA deep sequencing of matched formalin-fixed paraffin-embedded and fresh frozen cancer tissues. PLoS One. 2013 May;8(5):e64393.
  • Tian T, Wang J, Zhou X. A review: microRNA detection methods. Org Biomol Chem. 2015;13(8):2226–2238.
  • Koga Y, Yamazaki N, Yamamoto Y, et al. Fecal miR-106a Is a useful marker for colorectal cancer patients with false-negative results in immunochemical fecal occult blood test. Cancer Epidemiol Biomarkers Prev. 2013 Oct;22(10):1844–1852.
  • Ahmed FE, Ahmed NC, Voss PW. Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle.. Cancer Genomics Proteomics. 2013;10(3):93–113.
  • Wu CW, Ng SSM, Dong YJ, et al. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut. 2012 May;61(5):739–745.
  • Loser C, Mollgaard A, Folsch UR. Faecal elastase 1: a novel, highly sensitive, and specific tubeless pancreatic function test. Gut. 1996 Oct;39(4):580–586.
  • Lüth S, Teyssen S, Forssmann K, et al. Fecal elastase-1 determination: ‘gold standard’ of indirect pancreatic function tests? Scand J Gastroenterol. 2001;36(10):1092–1099.
  • Rothenbacher D, Löw M, Hardt PD, et al. Prevalence and determinants of exocrine pancreatic insufficiency among older adults: results of a population-based study. Scand J Gastroenterol. 2005;40:697–704.
  • Lankisch PG, Schmidt I, Konig H, et al. Faecal elastase 1: not helpful in diagnosing chronic pancreatitis associated with mild to moderate exocrine pancreatic insufficiency. Gut. 1998 Apr;42(4):551–554.
  • Karbach U, Ewe K, Bodenstein H. Alpha 1-antitrypsin, a reliable endogenous marker for intestinal protein loss and its application in patients with Crohn’s disease. Gut. 1983 Aug;24(8):718–723.
  • Saitoh O, Matsumoto H, Sugimori K, et al. Intestinal protein loss and bleeding assessed by fecal hemoglobin, transferrin, albumin, and alpha-1-antitrypsin levels in patients with colorectal diseases. Digestion. 1995 Feb;56(1):67–75.
  • Iebba V, Santangelo F, Totino V, et al. Higher prevalence and abundance of bdellovibrio bacteriovorus in the human gut of healthy subjects. PLoS One. 2013;8(4):1–9.
  • Nistal E, Fernández-Fernández N, Vivas S, et al. Factors determining colorectal cancer: the role of the intestinal microbiota. Front Oncol. 2015;5:220.
  • Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661–672.
  • Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015;6:6528.
  • Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15(3):317–328.
  • Sobhani I, Tap J, Roudot-Thoraval F, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One. 2011;6:1.
  • Bonnet M, Buc E, Sauvanet P. Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res. 2014;20(4):859–867.
  • Dulal S, Keku TO. Gut microbiome and colorectal adenomas. Cancer J. 2014;20(3):225–231.
  • Wu N, Yang X, Zhang R, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol. 2013;66(2):462–470.
  • Sun J, Kato I. Gut microbiota, inflammation and colorectal cancer. Genes Dis 2016 Jun;3(2):130–143.
  • Sinha R, Ahn J, Sampson JN, et al. Fecal microbiota, fecal metabolome, and colorectal cancer interrelations. PLoS One. 2016;11(3):e0152126.
  • Zackular JP, Baxter NT, Chen GY, et al. Manipulation of the gut microbiota reveals role in colon tumorigenesis. mSphere. 2015;1(1):e00001–15.
  • Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013 Aug;14(2):207–215.
  • Weir TL, Manter DK, Sheflin AM, et al. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One. 2013;8(8).
  • Hester CM, Jala VR, Langille MG, et al. Fecal microbes, short chain fatty acids, and colorectal cancer across racial/ethnic groups. World J Gastroenterol. 2015;21(9):2759–2769.
  • Flanagan L, Schmid J, Ebert M, et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis. 2014;33(8):1381–1390.
  • Ahn J, Sinha R, Pei Z, et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst. 2013;105(24):1907–1911.
  • Zackular JP, Rogers MAM, Ruffin MT, et al. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res 2014;7:1112–1121.
  • Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel diseases: current status and the future ahead. Gastroenterology. 2015;146(6):1489–1499.
  • Willing B, Halfvarson J, Dicksved J, et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. Inflamm Bowel Dis. 2009;15(5):653–660.
  • Eeckhaut V, Machiels K, Perrier C, et al. Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut. 2013 Dec;62(12):1745–1752.
  • Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014 Aug;63(8):1275–1283.
  • Geng J, Fan H, Tang X, et al. Diversified pattern of the human colorectal cancer microbiome. Gut Pathog. 2013;5(1):2.
  • Wang T, Cai G, Qiu Y. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6(2):320–329.
  • Kashtan H, Rabau M, Peled Y, et al. Methane production in patients with colorectal carcinoma. Isr J Med Sci. 1989 Nov;25(11):614–616.
  • Sivertsen SM, Bjørneklett A, Gullestad HP, et al. Breath methane and colorectal cancer. Scand J Gastroenterol. 2009 Jul;27(1):25–28.
  • Karlin DA, Jones RD, Stroehlein JR, et al. Breath methane excretion in patients with unresected colorectal cancer. J Natl Cancer Inst. 1982;69(3):573–576.
  • Pique JM, Pallares M, Cuso E, et al. Methane production and colon cancer. Gastroenterology. 1984;87(3):601–605.
  • Amal H, Leja M, Funka K, et al. Breath testing as potential colorectal cancer screening tool. Int J Cancer. 2016 Jan;138(1):229–236.
  • Altomare DF, Di Lena M, Porcelli F, et al. Exhaled volatile organic compounds identify patients with colorectal cancer. Br J Surg 2013 Jan;100(1):144–150.
  • Peng G, Hakim M, Broza YY, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer. 2010;103(4):542–551.
  • Kokoszka J, Nelson RL, Swedler WI, et al. Determination of inflammatory bowel disease activity by breath pentane analysis. Dis Colon Rectum. 1993 Jun;36(6):597–601.
  • Patel N, Alkhouri N, Eng K. Metabolomic analysis of breath volatile organic compounds reveals unique breathprints in children with inflammatory bowel disease: a pilot study. Aliment Pharmacol Ther. 2014;40(5):498–507.
  • Rieder F, Kurada S, Grove D, et al. A distinct colon-derived breath metabolome is associated with inflammatory bowel disease, but not its complications. Clin Transl Gastroenterol. 2016;7(11):e201.
  • Banik GD, De A, Som S, et al. Hydrogen sulphide in exhaled breath: a potential biomarker for small intestinal bacterial overgrowth in IBS. J Breath Res. 2016;10(2):26010.
  • Sedghi S, Keshavarzian A, Klamut M, et al. Elevated breath ethane levels in active ulcerative colitis: evidence for excessive lipid peroxidation. Am J Gastroenterol. 1994;89(12):2217–2222.
  • Pelli MA, Trovarelli G, Capodicasa E, et al. Breath Mkanes determination in ulcerative colitis and Crohn's disease. Diseases of the Colon and Rectum. 1999;42(1):71–76.
  • McKay LF, Eastwood MA, Brydon WG. Methane excretion in man–a study of breath, flatus, and faeces. Gut. 1985;26(1):69–74.
  • Ewe K, Schwartz S, Petersen S, et al. Inflammation does not decrease intraluminal pH in chronic inflammatory bowel disease. Dig Dis Sci. 1999;44(7):1434–1439.
  • Pye G, Evans DF, Ledingham S, et al. Gastrointestinal intraluminal pH in normal subjects and those with colorectal adenoma or carcinoma. Gut. 1990;31(12):1355–1357.
  • Hove H, Rye Clausen M, Brøbech Mortensen P. Lactate and pH in faeces from patients with colonic adenomas or cancer. Gut. 1993;34(5):625–629.
  • Van Dokkum W, De Boer B. Diet, faecal pH and colorectal cancer. J Cancer. 1983;109–110.
  • Thornton JR. High colonic pH promotes colorectal cancer. Lancet. 1981 May;317(8229):1081–1083.
  • Press AG, Hauptmann IA, Hauptmann L. Gastrointestinal pH profiles in patients with inflammatory bowel disease.. Aliment Pharmacol Ther. 1998;12(7):673–678.
  • Fallingborg J, Christensen LA, Jacobsen BA, et al. Very low intraluminal colonic pH in patients with active ulcerative colitis. Dig Dis Sci. 1993 Nov;38(11):1989–1993.
  • Nugent S, Kumar D, Rampton D, et al. Gut pH and transit time in ulcerative colitis appear sufficient for complete dissolution of pH-dependent mesalazine-containing capsules. Gut. 2000;46(A9):A781.
  • Sipponen T, Kärkkäinen P, Savilahti E, Correlation of faecal calprotectin and lactoferrin with an endoscopic score for Crohn’s disease and histological findings. Aliment Pharmacol Ther. 2008;28(10):1221–1229.
  • Thjodleifsson B, Sigthorsson G, Cariglia N, et al. Subclinical intestinal inflammation: an inherited abnormality in Crohn’s disease relatives? Gastroenterology. 2003;124(7):1728–1737.
  • Lasson A, Stotzer P, Ohman L. The intra-individual variability of faecal calprotectin: a prospective study in patients with active ulcerative colitis. J Crohn’s Colitis. 2014;9(1):26–32.
  • Meling TR, Aabakken L, Røseth A, et al. Faecal calprotectin shedding after short-term treatment with non-steroidal anti-inflammatory drugs. Scand J Gastroenterol. 1996 Jan;31(4):339–344.
  • Rendek Z, Falk M, Grodzinsky E, et al. Effect of oral diclofenac intake on faecal calprotectin. Scand J Gastroenterol. 2016 Jan;51(1):28–32.
  • Johne JB, Kronborg O, Tøn HI. A new fecal calprotectin test for colorectal neoplasia: clinical results and comparison with previous method. Scand J Gastroenterol. 2001 Jan;36(3):291–296.
  • Damms A, Bischoff SC. Validation and clinical significance of a new calprotectin rapid test for the diagnosis of gastrointestinal diseases. Int J Colorectal Dis. 2008 Oct;23(10):985–992.
  • Summerton CB, Longlands MG, Wiener K, et al. Faecal calprotectin: a marker of inflammation throughout the intestinal tract. Eur J Gastroenterol Hepatol. 2002;14(8):841–845.
  • Jun J, Jae P, Cheon H. Small bowel evaluation in asymptomatic fecal immunochemical test-positive patients with a negative colonoscopy: is it necessary? Dig Dis Sci. 2011;56:2773–2775.
  • Amaro A, Chiara S, Pfeffer U. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang. Cancer Metastasis Rev 2016;35(1):63–74.
  • Ahlquist DA, Harrington JJ, Burgart LJ, et al. Morphometric analysis of the ‘mucocellular layer’ overlying colorectal cancer and normal mucosa: relevance to exfoliation and stool screening. Hum Pathol. 2000;31(1):51–57.
  • Dickinson BT, Kisiel J, Ahlquist DA, et al. Molecular markers for colorectal cancer screening. Gut. 2015;64(9):1485–1494.
  • Okugawa Y, Grady WM, Goel A. Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology. 2015;149(5):1204–1225e12.
  • Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–990.
  • Su Y-H, Wang M, Brenner DE, et al. Human urine contains small, 150 to 250 nucleotide-sized, soluble DNA derived from the circulation and may be useful in the detection of colorectal cancer. J Mol Diagn. 2004 May;6(2):101–107.
  • Bosch LJW, Mongera S, Sive Droste JST, et al. Analytical sensitivity and stability of DNA methylation testing in stool samples for colorectal cancer detection. Cell Oncol. 2012;35(4):309–315.
  • Zou H, Harrington JJ, Klatt KK, et al. A sensitive method to quantify human long DNA in stool: relevance to colorectal cancer screening. Cancer Epidemiol Biomarkers Prev. 2006;15(6):1115–1119.
  • Olson J, Whitney DH, Durkee K, et al. DNA stabilization is critical for maximizing performance of fecal DNA-based colorectal cancer tests. Diagn Mol Pathol. 2005;14(3):183–191.
  • Zou H, Allawi H, Cao X, et al. Quantification of methylated markers with a multiplex methylation-specific technology. Clin Chem. 2012;58(2):375–383.
  • Diehl F, Schmidt K, Durkee KH, et al. Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology. 2008 Aug;135(2):489–498.e7.
  • Zhai R-L, Xu F, Zhang P. The diagnostic performance of stool DNA testing for colorectal cancer. Medicine (Baltimore). 2016 Feb;95(5):e2129.
  • Imperiale TF, Ransohoff DF, Itzkowitz SH, et al. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med. 2014;370(14):1287–1297.
  • Lin JS, Piper MA, Perdue LA, et al. Screening for colorectal cancer: a systematic review for the U.S. preventive services task force: (Evidence Syntheses, No. 135.). Agency for Healthcare Research and Quality; 2016.
  • George B, Kopetz S. Predictive and prognostic markers in colorectal cancer. Curr Oncol Rep. 2011;13(3):206–215.
  • Phipps AI, Limburg PJ, Baron JA, et al. Association between molecular subtypes of colorectal cancer and patient survival. Gastroenterology. 2015;148(1): 77–87.e2.
  • Min B-H, Bae JM, Lee EJ, et al. The CpG island methylator phenotype may confer a survival benefit in patients with stage II or III colorectal carcinomas receiving fluoropyrimidine-based adjuvant chemotherapy. BMC Cancer. 2011 Dec;11(1):344.
  • Jover R, Nguyen T, Pérez–Carbonell L, et al. 5-Fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer. Gastroenterology. 2011;140(4):1174–1181.
  • Juo YY, Johnston FM, Zhang DY. Prognostic value of CpG island methylator phenotype among colorectal cancer patients: a systematic review and meta-analysis.. Ann Oncol. 2014;25(12):2314–2327.
  • Robertson DJ, Dominitz JA. Stool DNA and colorectal-cancer screening. N Engl J Med. 2014 Apr;370(14):1350–1351.
  • Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–848.
  • Guarner F, Malagelada, JR, Simon GL. Gut flora in health and disease. Lancet. 2003 Feb;361(9356):512–519.
  • Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015 Jan;31(1):69–75.
  • Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012 Jun;486(7402):207–214.
  • Conlon M, Bird A. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2014 Dec;7(1):17–44.
  • Irrazábal T, Belcheva A, Girardin SE, et al. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell. 2014;54(2):309–320.
  • Baumgart M, Dogan B, Rishniw M. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 2007;1(5):403–418.
  • Momozawa Y, Deffontaine V, Louis E, et al. Characterization of bacteria in biopsies of colon and stools by high throughput sequencing of the V2 region of bacterial 16s rRNA gene in human. PLoS One. 2011;6:2.
  • Tjalsma H, Boleij A, Marchesi JR, et al. A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012 Jun;10(8):575–582.
  • Wolin M. Fermentation in the rumen and human large intestine. Science. 1981 Sep;213(4515):1463–1468.
  • Kurada S, Alkhouri N, Fiocchi C, et al. Review article: breath analysis in inflammatory bowel diseases. Aliment Pharmacol Ther. 2015 Feb;41(4):329–341.
  • de Lacy Costello B, Amann A, Al-Kateb H, et al. A review of the volatiles from the healthy human body. J Breath Res. 2014;8(1):14001.
  • Ou JZ, Yao CK, Rotbart A, et al. Human intestinal gas measurement systems: in vitro fermentation and gas capsules. Trends Biotechnol. 2015;33(4):208–213.
  • Kalantar-Zadeh K, Yao CK, Berean KJ, et al. Intestinal gas capsules: a proof-of-concept demonstration. Gastroenterology. 2016 Jan;150(1):37–39.
  • Clarysse S, Tack J, Lammert F, et al. Postprandial evolution in composition and characteristics of human duodenal fluids in different nutritional states. J Pharm Sci. 2009 Mar;98(3):1177–1192.
  • Bai JPF, Burckart GJ, Mulberg AE. Literature review of gastrointestinal physiology in the elderly, in pediatric patients, and in patients with gastrointestinal diseases. J Pharm Sci. 2016;105 (2):476–483.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.