864
Views
0
CrossRef citations to date
0
Altmetric
Review

An update on dietary consideration in inflammatory bowel disease: anthocyanins and more

, , , , , , , & show all
Pages 1007-1024 | Received 04 Jun 2018, Accepted 15 Aug 2018, Published online: 26 Sep 2018

References

  • Dinu M, Abbate R, Gensini GF, et al. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017;57(17):3640–3649.
  • Micha R, Peñalvo JL, Cudhea F, et al. Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. Jama. 2017;317(9):912–924.
  • Romagnolo DF, Selmin OI. Mediterranean diet and prevention of chronic diseases. Nutrition Today. 2017;52(5):208–222.
  • H Farzaei M, Rahimi R, Abdollahi M. The role of dietary polyphenols in the management of inflammatory bowel disease. Curr Pharm Biotechnol. 2015;16(3):196–210.
  • Hou JK, Lee D, Lewis J. Diet and inflammatory bowel disease: review of patient-targeted recommendations. Clin Gastroenterol Hepatol. 2014;12(10):1592–1600.
  • Mann ER, Li X. Intestinal antigen-presenting cells in mucosal immune homeostasis: crosstalk between dendritic cells, macrophages and B-cells. World J Gastroenterol. 2014;20(29):9653.
  • Vezza T, Rodríguez-Nogales A, Algieri F, et al. Flavonoids in inflammatory bowel disease: a review. Nutrients. 2016;8(4):211.
  • Mehta M, Ahmed S, Dryden G. Immunopathophysiology of inflammatory bowel disease: how genetics link barrier dysfunction and innate immunity to inflammation. J Innate Immun. 2017;23(6):497–505.
  • Wright EK, Kamm MA, Teo SM, et al. Recent advances in characterizing the gastrointestinal microbiome in Crohn’s disease: a systematic review. Inflamm Bowel Dis. 2015;21(6):1219–1228.
  • Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375(24):2369–2379.
  • Loddo I, Romano C. Inflammatory bowel disease: genetics, epigenetics, and pathogenesis. Front Immunol. 2015;6:551.
  • Cassidy A, Rogers G, Peterson JJ, et al. Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults. Am J Clin Nutr. 2015;102(1):172–181.
  • David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559.
  • He J, Giusti MM. Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol. 2010;1:163–187.
  • Pojer E, Mattivi F, Johnson D, et al. The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci Food Saf. 2013;12(5):483–508.
  • Amin HP, Czank C, Raheem S, et al. Anthocyanins and their physiologically relevant metabolites alter the expression of IL‐6 and VCAM‐1 in CD40L and oxidized LDL challenged vascular endothelial cells. Mol Nutr Food Res. 2015;59(6):1095–10106.
  • Fernandes P, MacSharry J, Darby T, et al. Differential expression of key regulators of Toll‐like receptors in ulcerative colitis and Crohn’s disease: a role for Tollip and peroxisome proliferator‐activated receptor gamma? J Clin Exp Immunol. 2016;183(3):358–368.
  • Geremia A, Biancheri P, Allan P, et al. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev. 2014;13(1):3–10.
  • Figuera-Losada M, Rojas C, Slusher BS. Inhibition of microglia activation as a phenotypic assay in early drug discovery. J Biomol Screen. 2014;19(1):17–31.
  • Fontani F, Domazetovic V, Marcucci T, et al. MMPs, ADAMs and their natural inhibitors in inflammatory bowel disease: involvement of oxidative stress. J Clin Gastroenterol Treat. 2017;3:039.
  • Sodagari HR, Farzaei MH, Bahramsoltani R, et al. Dietary anthocyanins as a complementary medicinal approach for management of inflammatory bowel disease. Expert Rev Gastroenterol Hepatol. 2015;9(6):807–820.
  • Rogler G. Where are we heading to in pharmacological IBD therapy? Pharmacol Res. 2015;100:220–227.
  • Kim J, Yoon Y, Jeoung D, et al. Interferon-γ stimulates human follicular dendritic cell-like cells to produce prostaglandins via the JAK-STAT pathway. Mol Immunol. 2015;66(2):189–196.
  • Nunes C, Teixeira N, Serra D, et al. Red wine polyphenol extract efficiently protects intestinal epithelial cells from inflammation via opposite modulation of JAK/STAT and nrf2 pathways. Toxicol Res. 2016;5(1):53–65.
  • Roth S, Spalinger MR, Müller I, et al. Bilberry-derived anthocyanins prevent IFN-γ-induced pro-inflammatory signalling and cytokine secretion in human THP-1 monocytic cells. Digestion. 2014;90(3):179–189.
  • Roth S, Spalinger MR, Gottier C, et al. Bilberry-derived anthocyanins modulate cytokine expression in the intestine of patients with ulcerative colitis. PloS One. 2016;11(5):e0154817.
  • Tomlinson ML, Butelli E, Martin C, et al. Flavonoids from engineered tomatoes inhibit gut barrier pro-inflammatory cytokines and chemokines, via saPK/jnk and p38 mapk pathways. Front Nutr. 2017;4:61.
  • Annese V, Rogai F, Settesoldi A, et al. PPARγ in inflammatory bowel disease. PPAR Res. 2012;2012:620839.
  • Choo J, Lee Y, Yan XJ, et al. A novel peroxisome proliferator-activated receptor (PPAR) γ agonist 2-hydroxyethyl 5-chloro-4, 5-didehydrojasmonate exerts anti-inflammatory effects in colitis. J Biol Chem. 2015;290(42):25609–25619.
  • Serra D, Almeida LM, Dinis TC. Anti-inflammatory protection afforded by cyanidin-3-glucoside and resveratrol in human intestinal cells via nrf2 and PPAR-γ: comparison with 5-aminosalicylic acid. Chem Biol Interact. 2016;260:102–109.
  • Ferrari D, Speciale A, Cristani M, et al. Cyanidin-3-O-glucoside inhibits NF-kB signalling in intestinal epithelial cells exposed to TNF-α and exerts protective effects via nrf2 pathway activation. Toxicol Lett. 2016;264:51–58.
  • Ferrari D, Cimino F, Fratantonio D, et al. Cyanidin-3-O-glucoside modulates the in vitro inflammatory crosstalk between intestinal epithelial and endothelial cells. Mediators Inflamm. 2017;2017:3454023.
  • Taverniti V, Fracassetti D, Del Bo’ C, et al. Immunomodulatory effect of a wild blueberry anthocyanin-rich extract in human caco-2 intestinal cells. J Agric Food Chem. 2014;62(33):8346–8351.
  • Peng Y, Zhang H, Liu R, et al. Antioxidant and anti-inflammatory activities of pyranoanthocyanins and other polyphenols from staghorn sumac (rhus hirta L. Caco-2 Cell Models J Funct Foods. 2016;20:139–147.
  • Li L, Wang L, Wu Z, et al. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264. 7 macrophages and a mouse model of colitis. Sci Rep. 2015;4:6234.
  • Olejnik A, Kowalska K, Kidoń M, et al. Purple carrot anthocyanins suppress lipopolysaccharide-induced inflammation in the co-culture of intestinal caco-2 and macrophage RAW264. 7 cells. Food Funct. 2016;7(1):557–564.
  • Pereira SR, Pereira R, Figueiredo I, et al. Comparison of anti-inflammatory activities of an anthocyanin-rich fraction from Portuguese blueberries (vaccinium corymbosum L.) and 5-aminosalicylic acid in a TNBS-induced colitis rat model. PloS One. 2017;12(3):e0174116.
  • Zhao L, Zhang Y, Liu G, et al. Black rice anthocyanin-rich extract and rosmarinic acid, alone and in combination, protect against DSS-induced colitis in mice. Food Funct. 2018.
  • Zielińska M, Lewandowska U, Podsędek A, et al. Orally available extract from Brassica oleracea var. capitata rubra attenuates experimental colitis in mouse models of inflammatory bowel diseases. J Funct Foods. 2015;17:587–599.
  • Scarano A, Butelli E, De Santis S, et al. Combined dietary anthocyanins, flavonols and stilbenoids alleviate inflammatory bowel disease symptoms in mice. Front Nutr. 2017;4:75.
  • Kakodkar S, Mutlu EA. Diet as a therapeutic option for adult inflammatory bowel disease. Gastroenterol Clin. 2017;46(4):745–767.
  • Limketkai BN, Wolf A, Parian AM. Nutritional interventions in the patient with inflammatory bowel disease. Gastroenterol Clin North Am. 2018;47(1):155–177.
  • Larussa T, Imeneo M, Luzza F. Potential role of nutraceutical compounds in inflammatory bowel disease. World J Gastroenterol. 2017;23(14):2483–2492.
  • Jansakova K, Babickova J, Filova B, et al. Anthocyanin-rich diet in chemically induced colitis in mice. Folia Biol. 2015;61(3):104–109.
  • Nasef NA, Mehta S, Murray P, et al. Anti-inflammatory activity of fruit fractions in vitro, mediated through toll-like receptor 4 and 2 in the context of inflammatory bowel disease. Nutrients. 2014;6(11):5265–5279.
  • Turrini E, Ferruzzi L, Fimognari C. Potential effects of pomegranate polyphenols in cancer prevention and therapy. Oxid Med Cell Longev. 2015;2015:938475.
  • Kusmardi KD, Hermanto A, Estuningytas A, et al. The potency of indonesia’s pomegranate peel ethanol extract (punica granatum linn.) as anti-inflammatory agent in mice colon induced by dextran sodium sulfate: focus on cyclooxygenase-2 and inos expressions. Priosoeryanto. 2017;2017:6.
  • Kim H, Banerjee N, Sirven MA, et al. Pomegranate polyphenolics reduce inflammation and ulceration in intestinal colitis—involvement of the miR-145/p70S6K1/HIF1α axis in vivo and in vitro. J Nutr Biochem. 2017;43::107–115.
  • Kim H, Banerjee N, Ivanov I, et al. Comparison of anti‐inflammatory mechanisms of mango (Mangifera Indica L.) and pomegranate (Punica Granatum L.) in a preclinical model of colitis. Mol Nutr Food Res. 2016;60(9):1912–1923.
  • Riaz A, Khan RA, Afroz S, et al. Prophylactic and therapeutic effect of punica granatum in trinitrobenzene sulfonic acid induced inflammation in rats. Pak J Pharm Sci. 2017;30:1.
  • Lee SJ, Shin JS, Choi HE, et al. Chloroform fraction of solanum tuberosum L. cv jayoung epidermis suppresses LPS-induced inflammatory responses in macrophages and DSS-induced colitis in mice. Food Chem Toxicol. 2014;63:53–61.
  • Chen T, Hu S, Zhang H, et al. Anti-inflammatory effects of dioscorea alata L. anthocyanins in a TNBS-induced colitis model. Food Funct. 2017;8(2):659–669.
  • Junior LD, Quaglio AE, De Almeida Costa CA, et al. Intestinal anti-inflammatory activity of ground cherry (Physalis angulata L.) standardized CO2 phytopharmaceutical preparation. World J Gastroenterol. 2017;23(24):4369.
  • Castro J, Ocampo Y, Cape Gooseberry FL. [Physalis peruviana L.] calyces ameliorate tnbs acid-induced colitis in rats. J Crohns Colitis. 2015;9(11):1004–1015.
  • Montrose DC, Horelik NA, Madigan JP, et al. Anti-inflammatory effects of freeze-dried black raspberry powder in ulcerative colitis. Carcinogenesis. 2010;32(3):343–350.
  • Bibi S, Kang Y, Du M, et al. Dietary red raspberries attenuate dextran sulfate sodium-induced acute colitis. J Nutr Biochem. 2018;51:40–46.
  • Kang SH, Jeon YD, Moon KH, et al. Aronia berry extract ameliorates the severity of dextran sodium sulfate-induced ulcerative colitis in mice. J Med Food. 2017;20(7):667–675.
  • Valcheva-Kuzmanova S, Kuzmanov A, Kuzmanova V, et al. Aronia melanocarpa fruit juice ameliorates the symptoms of inflammatory bowel disease in TNBS-induced colitis in rats. Food Chem Toxicol. 2018;113:33-39.
  • Martin DA, Smyth JA, Liu Z, et al. Aronia berry (Aronia mitschurinii ‘viking’) inhibits colitis in mice and inhibits T cell tumour necrosis factor-α secretion. J Funct Foods. 2018;44:48–57.
  • Bucheli P, Vidal K, Shen L, et al. Goji berry effects on macular characteristics and plasma antioxidant levels. Optom Vis Sci. 2011;88(2):257–262.
  • Kang Y, Xue Y, Du M, et al. Preventive effects of goji berry on dextran-sulfate-sodium-induced colitis in mice. J Nutr Biochem. 2017;40:70–76.
  • Tadić VM, Dobrić S, Marković GM, et al. Anti-inflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of hawthorn berries ethanol extract. J Agric Food Chem. 2008;56(17):7700–7709.
  • Malekinejad H, Shafie-Irannejad V, Hobbenaghi R, et al. Comparative protective effect of hawthorn berry hydroalcoholic extract, atorvastatin, and mesalamine on experimentally induced colitis in rats. J Med Food. 2013;16(7):593–601.
  • Pervin M, Hasnat MA, Lim JH, et al. Preventive and therapeutic effects of blueberry (Vaccinium corymbosum) extract against DSS-induced ulcerative colitis by regulation of antioxidant and inflammatory mediators. J Nutr Biochem. 2016;28:103–113.
  • Lin LZ, Harnly JM, Pastor-Corrales MS, et al. The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chem. 2008;107(1):399–410.
  • Monk JM, Lepp D, Zhang CP, et al. Diets enriched with cranberry beans alter the microbiota and mitigate colitis severity and associated inflammation. J Nutr Biochem. 2016;28:129–139.
  • Monk JM, Zhang CP, Wu W, et al. White and dark kidney beans reduce colonic mucosal damage and inflammation in response to dextran sodium sulfate. J Nutr Biochem. 2015;26(7):752–760.
  • Boussenna A, Cholet J, Goncalves‐Mendes N, et al. Polyphenol‐rich grape pomace extracts protect against dextran sulfate sodium‐induced colitis in rats. J SciFood Agric. 2016;96(4):1260–1268.
  • Paiotti AP, Neto RA, Marchi P, et al. The anti-inflammatory potential of phenolic compounds in grape juice concentrate (G8000™) on 2, 4, 6-trinitrobenzene sulphonic acid-induced colitis. Br J Nutr. 2013;110(6):973–980.
  • Hasona N, Hussein T. Biochemical, histopathological, and histochemical effects of Vitis vinifera L. extract on acetic acid-induced colitis. J Intercult Ethnopharmacol. 2017;6(4):351–356.
  • Ju S, Mu J, Dokland T, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21(7):1345–1357.
  • Li R, Kim MH, Sandhu AK, et al. Muscadine grape (vitis rotundifolia) or wine phytochemicals reduce intestinal inflammation in mice with dextran sulfate sodium-induced colitis. J Agric Food Chem. 2017;65(4):769–776.
  • Wang H, Xue Y, Zhang H, et al. Dietary grape seed extract ameliorates symptoms of inflammatory bowel disease in IL10-deficient mice. Mol Nutr Food Res. 2013;57(12):2253–2257.
  • Gomes-Santos AC, Moreira TG, Castro-Junior AB, et al. New insights into the immunological changes in IL-10-deficient mice during the course of spontaneous inflammation in the gut mucosa. Clin Dev Immunol. 2012;2012:560817.
  • Yook JS, Kim KA, Kim M, et al. Black adzuki bean (vigna angularis) attenuates high-fat diet-induced colon inflammation in mice. J Med Food. 2017;20(4):367–375.
  • Pandurangan AK, Saadatdoust Z, Mohd. Esa N, et al. Dietary cocoa protects against colitis‐associated cancer by activating the N rf2/K eap1 pathway. Biofactors. 2015;41(1):1–4.
  • Pérez-Berezo T, Ramírez-Santana C, Franch A, et al. Effects of a cocoa diet on an intestinal inflammation model in rats. Exp Biol Med. 2012;237(10):1181–1188.
  • Zorrilla P, Rodriguez-Nogales A, Algieri F, et al. Intestinal anti-inflammatory activity of the polyphenolic-enriched extract amanda® in the trinitrobenzenesulphonic acid model of rat colitis. J Funct Foods. 2014;11:449–459.
  • Chandrasenan P, Anjumol VM, Neethu MV, et al. Cytoprotective and antiinflammatory effect of polyphenolic fraction from red cabbage (Brassica oleracea linn var. capitata f rubra) in experimentally induced ulcerative colitis. J Appl Pharm Sci. 2016;6(01):137–146.
  • Da Silva M, Jaggers GK, Verstraeten SV, et al. Large procyanidins prevent bile-acid-induced oxidant production and membrane-initiated ERK1/2, p38, and akt activation in caco-2 cells. Free Radic Biol Med. 2012;52(1):151–159.
  • Bitzer ZT, Glisan SL, Dorenkott MR, et al. Cocoa procyanidins with different degrees of polymerization possess distinct activities in models of colonic inflammation. J Nutr Biochem. 2015;26(8):827–831.
  • Serra D, Paixão J, Nunes C, et al. Cyanidin-3-glucoside suppresses cytokine-induced inflammatory response in human intestinal cells: comparison with 5-aminosalicylic acid. PloS One. 2013;8(9):e73001.
  • Jang SE, Choi JR, Han MJ, et al. The preventive and curative effect of cyanidin-3β-d-glycoside and its metabolite protocatechuic acid against TNBS-induced colitis in mice. Nat Prod Sci. 2016;22(4):282–286.
  • Qian Z, Wu Z, Huang L, et al. Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice. Sci Rep. 2015;5:17348.
  • Shah TA, Parikh M, Patel KV, et al. Evaluation of the effect of punica granatum juice and punicalagin on NFκB modulation in inflammatory bowel disease. Mol Cell Biochem. 2016;419(1–2):65–74.
  • Saadatdoust Z, Pandurangan AK, Sadagopan SK, et al. Dietary cocoa inhibits colitis associated cancer: a crucial involvement of the IL-6/STAT3 pathway. J Nutr Biochem. 2015;26(12):1547–1558.
  • Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429(3):403–417.
  • Edelblum KL, Turner JR. The tight junction in inflammatory disease: communication breakdown. Curr Opin Pharmacol. 2009;9(6):715–720.
  • Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68–75.
  • Wang LS, Kuo CT, Huang TH, et al. Black raspberries protectively regulate methylation of wnt pathway genes in precancerous colon tissue. Cancer Prev Res. 2013;6(12):1317–1327.
  • Yang G, Wang H, Kang Y, et al. Grape seed extract improves epithelial structure and suppresses inflammation in ileum of IL-10-deficient mice. Food Funct. 2014;5(10):2558–2563.
  • Kang R, Zeh HJ, Lotze MT, et al. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18(4):571.
  • Shukla PK, Khanna VK, Khan MY, et al. Protective effect of curcumin against lead neurotoxicity in rat. Hum Exp Toxicol. 2003;22(12):653–658.
  • Piper JT, Singhal SS, Salameh MS, et al. Mechanisms of anticarcinogenic properties of curcumin: the effect of curcumin on glutathione linked detoxification enzymes in rat liver. Int J Biochem Cell Biol. 1998;30(4):445–456.
  • Balogun E, Hoque M, Pengfei GO, et al. Curcumin activates the haem oxygenase-1 gene via regulation of nrf2 and the antioxidant-responsive element. Biochem J. 2003;371(3):887–895.
  • Zhao R, Yang B, Wang L, et al. Curcumin protects human keratinocytes against inorganic arsenite-induced acute cytotoxicity through an NRF2-dependent mechanism. Oxid Med Cell Longev. 2013;2013:412576.
  • Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–426.
  • Kaspar KL, Park JS, Brown CR, et al. Pigmented potato consumption alters oxidative stress and inflammatory damage in men, 2. Int J Nutr. 2010;141(1):108–111.
  • Kuntz S, Kunz C, Herrmann J, et al. Anthocyanins from fruit juices improve the antioxidant status of healthy young female volunteers without affecting anti-inflammatory parameters: results from the randomised, double-blind, placebo-controlled, cross-over ANTHONIA (ANTHOcyanins in Nutrition Investigation Alliance) study. Br J Nutr. 2014;112(6):925–936.
  • Kamali M, Tavakoli H, Khodadoost M, et al. Efficacy of the punica granatum peels aqueous extract for symptom management in ulcerative colitis patients. A randomized, placebo-controlled, clinical trial. Complement Ther Clin Pract. 2015;21(3):141–146.
  • Biedermann L, Mwinyi J, Scharl M, et al. Bilberry ingestion improves disease activity in mild to moderate ulcerative colitis—an open pilot study. J Crohns Colitis. 2013;7(4):271–279.
  • Rutz S, Eidenschenk C, Ouyang W. IL‐22, not simply a Th17 cytokine. Immunol Rev. 2013;252(1):116–132.
  • Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow?.Lancet. 2001;357(9255):539–545.
  • Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860.
  • Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001;48(4):526–535.
  • Azer SA. Overview of molecular pathways in inflammatory bowel disease associated with colorectal cancer development. Eur J Gastroenterol Hepatol. 2013;25(3):271–281.
  • Hou DX. Potential mechanisms of cancer chemoprevention by anthocyanins. Curr Mol Med. 2003;3(2):149–159.
  • Pan P, Kang S, Wang Y, et al. Black raspberries enhance natural killer cell infiltration into the colon and suppress the progression of colorectal cancer. Front Immunol. 2017;8:997.
  • Direito R, Lima A, Rocha J, et al. Dyospiros kaki phenolics inhibit colitis and colon cancer cell proliferation, but not gelatinase activities. J Nutr Biochem. 2017;46:100–108.
  • Å H, Bränning C, Molin G, et al. Blueberry husks and probiotics attenuate colorectal inflammation and oncogenesis, and liver injuries in rats exposed to cycling DSS-treatment. PLoS One. 2012;7(3):e33510.
  • Shi N, Clinton SK, Liu Z, et al. Strawberry phytochemicals inhibit azoxymethane/dextran sodium sulfate-induced colorectal carcinogenesis in crj: CD-1 mice. Nutrients. 2015;7(3):1696–1715.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.