321
Views
3
CrossRef citations to date
0
Altmetric
Review

An insight into primary biliary cholangitis and its recent advances in treatment: semi-synthetic analogs to combat ursodeoxycholic-acid resistance

ORCID Icon, ORCID Icon &
Pages 985-998 | Received 25 Apr 2020, Accepted 15 Jul 2020, Published online: 27 Jul 2020

References

  • Beuers U, Gershwin ME, Gish RG, et al. Changing nomenclature for PBC: from ‘cirrhosis’ to ‘cholangitis’. Gut. 2015;64:1671–1672.
  • Kaplan MM. Primary biliary cirrhosis. N Engl J Med. 1996;335:1570–1580.
  • Wiesner RH, Larusso NF, Ludwig J, et al. Comparison of the clinicopathologic features of primary sclerosing cholangitis and primary biliary cirrhosis. Gastroenterology. 1985;88:108–114.
  • Pinzani M, Luong TV. Pathogenesis of biliary fibrosis. BBA-Mol Basis Dis. 2018;1864:1279–1283.
  • Markus BH, Dickson ER, Grambsch PM, et al. Efficacy of liver transplantation in patients with primary biliary cirrhosis. N Engl J Med. 1989;320:1709–1713.
  • Schulz L, Sebode M, Weidemann SA, et al. Variant syndromes of primary biliary cholangitis. Best Pract Res Clin Gastroenterol. 2018;34:55–61.
  • Scheinberg AR, Levy C. Primary biliary cholangitis. Liver Dis. 2019;221–235. DOI:10.1007/978-3-319-98506-0_17
  • Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11.
  • Araújo AR, Rosso N, Bedogni G, et al. Global epidemiology of non‐alcoholic fatty liver disease/non‐alcoholic steatohepatitis: what we need in the future. Liver Int. 2018;38:47–51.
  • Kim WR, Lindor KD, Locke III GR, et al. Epidemiology and natural history of primary biliary cirrhosis in a US community. Gastroenterology. 2000;119:1631–1636.
  • Lleo A, Jepsen P, Morenghi E, et al. Evolving trends in female to male incidence and male mortality of primary biliary cholangitis. Sci Rep. 2016;6:25906.
  • Podda M, Selmi C, Lleo A, et al. The limitations and hidden gems of the epidemiology of primary biliary cirrhosis. J Autoimmun. 2013;46:81–87.
  • Sayiner M, Golabi P, Stepanova M, et al. Primary biliary cholangitis in Medicare population: the impact on mortality and resource use. Hepatol. 2019;69:237–244.
  • Myers RP, Shaheen AA, Fong A, et al. Epidemiology and natural history of primary biliary cirrhosis in a Canadian health region: a population‐based study. Hepatol. 2009;50:1884–1892.
  • Zhang H, Carbone M, Lleo A, et al. Geoepidemiology, genetic and environmental risk factors for PBC. Dig Dis. 2015;33:94–101.
  • Reshetnyak VI. Primary biliary cirrhosis: clinical and laboratory criteria for its diagnosis. World J Gastroenterol. 2015;21:7683.
  • Boonstra K, Beuers U, Ponsioen CY. Epidemiology of primary sclerosing cholangitis and primary biliary cirrhosis: a systematic review. J Hepatol. 2012;56:1181–1188.
  • Carey EJ, Ali AH, Lindor KD. Primary biliary cirrhosis. Lancet. 2015;386:1565–1575.
  • Prince M, Chetwynd A, Newman W, et al. Survival and symptom progression in a geographically based cohort of patients with primary biliary cirrhosis: follow-up for up to 28 years. Gastroenterology. 2002;123:1044–1051.
  • Floreani A, Caroli D, Variola A, et al. A 35‐year follow‐up of a large cohort of patients with primary biliary cirrhosis seen at a single centre. Liver Int. 2011;31:361–368.
  • Gatselis NK, Zachou K, Lygoura V, et al. Geoepidemiology, clinical manifestations and outcome of primary biliary cholangitis in Greece. Eur J Intern Med. 2017;42:81–88.
  • Murillo Perez CF, Goet JC, Lammers WJ, et al. Milder disease stage in patients with primary biliary cholangitis over a 44‐year period: a changing natural history. Hepatol. 2018;67:1920–1930.
  • Prince MI, James OF. The epidemiology of primary biliary cirrhosis. Clin Liver Dis. 2003;7:795–819.
  • Poupon R, Poupon R, Calmus Y, et al. Is ursodeoxycholic acid an effective treatment for primary biliary cirrhosis? Lancet. 1987;329:834–836.
  • Jadhav K, Xu Y, Xu Y, et al. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR. Mol Metab. 2018;9:131–140.
  • Hernandez ED, Zheng L, Kim Y, et al. Tropifexor‐mediated abrogation of steatohepatitis and fibrosis is associated with the antioxidative gene expression profile in rodents. Hepatol Commun. 2019;3:1085–1097.
  • Bookout AL, Mangelsdorf DJ. Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl Recept Signal. 2003;1:nrs-01012.
  • Kawamata Y, Fujii R, Hosoya M, et al. AG protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278:9435–9440.
  • Hambruch E, Miyazaki-Anzai S, Hahn U, et al. Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (−/−) mice. J Pharmacol Exp Ther. 2012;343:556–567.
  • Hartman HB, Gardell SJ, Petucci CJ, et al. Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR−/− and apoE−/− mice. J Lipid Res. 2009;50:1090–1100.
  • Mencarelli A, Renga B, Distrutti E, et al. Antiatherosclerotic effect of farnesoid X receptor. AM J Physiol-Heart C. 2009;296:H272–H281.
  • Mackay IR Primary biliary cirrhosis showing a high titer of autoantibody: report of a case. N Engl J Med. 1958;258:185–188.
  • Klatskin G, Kantor FS. Mitochondrial antibody in primary biliary cirrhosis and other diseases. Ann Intern Med. 1972;77:533–541.
  • Krams SM, Van-de WJ, Coppel RL, et al. Analysis of hepatic T lymphocyte and immunoglobulin deposits in patients with primary biliary cirrhosis. Hepatol. 1990;12:306–313.
  • Shimoda S, Nakamura M, Ishibashi H, et al. HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J Exp Med. 1995;181:1835–1845.
  • Lindor KD, Gershwin ME, Poupon R, et al. Primary biliary cirrhosis. Hepatol. 2009;50:291–308.
  • Katsumi T, Tomita K, Leung PS, et al. Animal models of primary biliary cirrhosis. Clin Rev Allergy Immunol. 2015;48:142–153.
  • Tsuda M, Zhang W, Yang GX, et al. Deletion of interleukin (IL)‐12p35 induces liver fibrosis in dominant‐negative TGFβ receptor type II mice. Hepatol. 2013;57:806–816.
  • Sun Y, Haapanen K, Li B, et al. Women and primary biliary cirrhosis. Clin Rev Allergy Immunol. 2015;48:285–300.
  • Šarenac TM, Mikov M. Bile acid synthesis: from nature to the chemical modification and synthesis and their applications as drugs and nutrients. Front Pharmacol. 2018;9:939.
  • Vavassori P, Mencarelli A, Renga B, et al. The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol. 2009;183:6251–6261.
  • Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA. 2006;103:3920–3925.
  • Kakiyama G, Hylemon PB, Zhou H, et al. Colonic inflammation and secondary bile acids in alcoholic cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2014;306:G929–G937.
  • Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med. 1999;159:2647–2658.
  • Fini A, Roda A. Chemical properties of bile acids. IV. Acidity constants of glycine-conjugated bile acids. J Lipid Res. 1987;28:755–759.
  • Bonar-Law RP, Davis AP. Cholic acid as an architectural component in biomimetic/molecular recognition chemistry; synthesis of the first “cholaphanes”. Tetrahedron. 1993;49:9829–9844.
  • Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Sci. 1999;284:1362–1365.
  • Wang H, Chen J, Hollister K, et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3:543–553.
  • Maruyama T, Miyamoto Y, Nakamura T, et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun. 2002;298:714–719.
  • Washizu T, Tomoda I, Kaneko JJ. Serum bile acid composition of the dog, cow, horse and human. J Vet Med Sci. 1991;53:81–86.
  • Fossati E, Polentini F, Carrea G, et al. Exploitation of the alcohol dehydrogenase‐acetone NADP‐regeneration system for the enzymatic preparative‐scale production of 12‐ketochenodeoxycholic acid. Biotechnol Bioeng. 2006;93:1216–1220.
  • Ahrens EH, Craig LC. The extraction and separation of bile acids. J Biol Chem. 1952;195:763–778.
  • Iser JH, Sali A. Chenodeoxycholic acid: a review of its pharmacological properties and therapeutic use. Drugs. 1981;21:90–119.
  • Braun M, Sun B, Anselment B, et al. Novel whole-cell biocatalysts with recombinant hydroxysteroid dehydrogenases for the asymmetric reduction of dehydrocholic acid. Appl Microbiol Biotechnol. 2012;95:1457–1468.
  • Sun B, Kantzow C, Bresch S, et al. Multi‐enzymatic one‐pot reduction of dehydrocholic acid to 12‐keto‐ursodeoxycholic acid with whole‐cell biocatalysts. Biotechnol Bioeng. 2013;110:68–77.
  • Pares A. Novel treatment strategies for primary biliary cholangitis. Semin Liver Dis. 2017;58:60–72.
  • Nevens F, Andreone P, Mazzella G, et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med. 2016;375:631–643.
  • European association for the study of the liver. EASL Clinical practice guidelines: the diagnosis and management of patients with primary biliary cholangitis. J Hepatol. 2017;67:145–172.
  • Keane RM, Gadacz TR, Munster AM, et al. Impairment of human lymphocyte function by bile salts. Surgery. 1984;95:439–443.
  • Calmus Y, Gane P, Rouger P, et al. Hepatic expression of class I and class II major histocompatibility complex molecules in primary biliary cirrhosis: effect of ursodeoxycholic acid. Hepatol. 1990;11:12–15.
  • Stiehl A, Rudolph G, Raedsch R, et al. Ursodeoxycholic acid–induced changes of plasma and urinary bile acids in patients with primary biliary cirrhosis. Hepatol. 1990;12:492–497.
  • Galle PR, Theilmann L, Raedsch R, et al. Ursodeoxycholate reduces hepatotoxicity of bile salts in primary human hepatocytes. Hepatol. 1990;12:486–491.
  • Pares A, Caballería L, Rodés J. Excellent long-term survival in patients with primary biliary cirrhosis and biochemical response to ursodeoxycholic acid. Gastroenterology. 2006;130:715–720.
  • Lindor KD, Bowlus CL, Boyer J, et al. Primary biliary cholangitis: 2018 practice guidance from the American Association for the Study of Liver Diseases. Hepatol. 2019;69:394–419.
  • Alvaro D, Invernizzi P, Onori P, et al. Estrogen receptors in cholangiocytes and the progression of primary biliary cirrhosis. J Hepatol. 2004;41:905–912.
  • McKinney EF, Lee JC, Jayne DR, et al. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523:612–616.
  • Hiramatsu K, Aoyama H, Zen Y, et al. Proposal of a new staging and grading system of the liver for primary biliary cirrhosis. Histopathology. 2006;49:466–478.
  • Poupon RE, Lindor KD, Cauch-Dudek KA, et al. Combined analysis of randomized controlled trials of ursodeoxycholic acid in primary biliary cirrhosis. Gastroenterology. 1997;113:884–890.
  • Kuiper EM, Hansen BE, de Vries RA, et al. Improved prognosis of patients with primary biliary cirrhosis that have a biochemical response to ursodeoxycholic acid. Gastroenterology. 2009;136:1281–1287.
  • Selmi C, Bowlus CL, Gershwin ME, et al. Primary biliary cirrhosis. Lancet. 2011;377:1600–1609.
  • Corpechot C, Abenavoli L, Rabahi N, et al. Biochemical response to ursodeoxycholic acid and long‐term prognosis in primary biliary cirrhosis. Hepatol. 2008;48:871–877.
  • Corpechot C, Chazouillères O, Poupon R. Early primary biliary cirrhosis: biochemical response to treatment and prediction of long-term outcome. J Hepatol. 2011;55:1361–1367.
  • Kumagi T, Guindi M, Fischer SE, et al. Baseline ductopenia and treatment response predict long-term histological progression in primary biliary cirrhosis. Am J Gastroenterol. 2010;105:2186–2194.
  • Azemoto N, Kumagi T, Abe M, et al. Biochemical response to ursodeoxycholic acid predicts long -term outcome in Japanese patients with primary biliary cirrhosis. Hepatol Res. 2011;41:310–317.
  • Angulo P, Lindor KD, Therneau TM, et al. Utilization of the Mayo risk score in patients with primary biliary cirrhosis receiving ursodeoxycholic acid. Liver. 1999;19:115–121.
  • Chen J, Xue D, Gao F, et al. Influence factors and a predictive scoring model for measuring the biochemical response of primary biliary cholangitis to ursodeoxycholic acid treatment. Eur J Gastroen Hepat. 2018;30:1352–1360.
  • Zhang LN, Shi TY, Shi XH, et al. Early biochemical response to ursodeoxycholic acid and long-term prognosis of primary biliary cirrhosis: results of a 14-year cohort study. Hepatol. 2013;58:264–272.
  • Lammers WJ, Van Buuren HR, Hirschfield GM, et al. Levels of alkaline phosphatase and bilirubin are surrogate end points of outcomes of patients with primary biliary cirrhosis: an international follow-up study. Gastroenterology. 2014;147:1338–1349.
  • Lammers WJ, Hirschfield GM, Corpechot C, et al. Development and validation of a scoring system to predict outcomes of patients with primary biliary cirrhosis receiving ursodeoxycholic acid therapy. Gastroenterol. 2015;149:1804–1812.
  • Carbone M, Sharp SJ, Flack S, et al. The UK‐PBC risk scores: derivation and validation of a scoring system for long‐term prediction of end‐stage liver disease in primary biliary cholangitis. Hepatol. 2016;63:930–950.
  • Vespasiani-Gentilucci U, Rosina F, Pace-Palitti V, et al. Rate of non-response to ursodeoxycholic acid in a large real-world cohort of primary biliary cholangitis patients in Italy. Scand J Gastroenterol. 2019;54:1274–1282.
  • Momah N, Silveira MG, Jorgensen R, et al. Optimizing biochemical markers as endpoints for clinical trials in primary biliary cirrhosis. Liver Int. 2012;32:790–795.
  • Efe C, Tascilar K, Henriksson I, et al. Validation of risk scoring systems in ursodeoxycholic acid–treated patients with primary biliary cholangitis. Am J Gastroenterol. 2019;114:1101–1108.
  • Adorini L, Pruzanski M, Shapiro D. Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov Today. 2012;17:988–997.
  • Fiorucci S, Rizzo G, Donini A, et al. Targeting farnesoid X receptor for liver and metabolic disorders. Trends Mol Med. 2007;13:298–309.
  • Sepe V, Distrutti E, Fiorucci S, et al. Farnesoid X receptor modulators 2014-present: a patent review. Expert Opin Ther Pat. 2018;28:351–364.
  • Fiorucci S, Di-Giorgio C, Distrutti E. Obeticholic acid: an update of its pharmacological activities in liver disorders. Bile Acids and Their Receptors. 2019:283–295.
  • Pellicciari R, Fiorucci S, Camaioni E, et al. 6α-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem. 2002;45:3569–3572.
  • Pellicciari R, Costantino G, Fiorucci S. Farnesoid X receptor: from structure to potential clinical applications. J Med Chem. 2005;48:5383–5403.
  • Ali AH, Lindor KD. Obeticholic acid for the treatment of primary biliary cholangitis. Expert Opin Pharmacother. 2016;17:1809–1815.
  • Kowdley KV, Luketic V, Chapman R, et al. A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis. Hepatol. 2018;67:1890–1902.
  • Lu TT, Makishima M, Repa JJ, et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell. 2000;6:507–515.
  • Markham A, Keam SJ. Obeticholic acid: first global approval. Drugs. 2016;76:1221–1226.
  • Hirschfield GM, Mason A, Luketic V, et al. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology. 2015;148:751–761.
  • De-Marino S, Festa C, Sepe V, et al. Chemistry and pharmacology of GPBAR1 and FXR selective agonists, dual agonists, and antagonists. Bile Acids and Their Receptors. 2019:137–165.
  • Samur S, Hur C, Klebanoff M, et al. Long-term clinical outcomes and cost-effectiveness of obeticholic acid for treatment of primary biliary cholangitis. Hepatol. 2017;65:920–928.
  • Pruzanski M, Intercept Pharmaceuticals. 38th Annual J P Morgan Healthcare Conference. 2020 Jan 15;San Francisco, California. http://ir.interceptpharma.com/static-files/8353b49a-67bd-40e0-aa2c-802ef4692581.
  • Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956–965.
  • Kowdley KV, Vuppalanchi R, Levy C, et al. A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. J Hepatol. 2020 Mar 10. DOI:10.1016/j.jhep.2020.02.033.
  • Liberal R, Grant CR. Cirrhosis and autoimmune liver disease: current understanding. World J Hepatol. 2016;8:1157.
  • Fickert P, Pollheimer MJ, Silbert D, et al. Differential effects of norUDCA and UDCA in obstructive cholestasis in mice. J Hepatol. 2013;58:1201–1208.
  • Halilbasic E, Steinacher D, Trauner M. Nor-ursodeoxycholic acid as a novel therapeutic approach for cholestatic and metabolic liver diseases. Dig Dis. 2017;35:288–292.
  • Li Q, Dutta A, Kresge C, et al. Bile acids stimulate cholangiocyte fluid secretion by activation of transmembrane member 16A Cl− channels. Hepatol. 2018;68:187–199.
  • Hofmann AF, Zakko SF, Lira M, et al. Novel biotransformation and physiological properties of norursodeoxycholic acid in humans. Hepatol. 2005;42:1391–1398.
  • Schteingart CD, Hofmann AF. Synthesis of 24-nor-5 beta-cholan-23-oic acid derivatives: a convenient and efficient one-carbon degradation of the side chain of natural bile acids. J Lipid Res. 1988;29:1387–1395.
  • Hirschfield GM, Gershwin ME. The immunobiology and pathophysiology of primary biliary cirrhosis. Annu Rev Pathol -Mech. 2013;8:303–330.
  • Banales JM, Sáez E, Úriz M, et al. Up‐regulation of microRNA 506 leads to decreased Cl−/HCO3− anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatol. 2012;56:687–697.
  • Hohenester S, Maillette-De BWL, Paulusma CC, et al. A biliary HCO3− umbrella constitutes a protective mechanism against bile acid‐induced injury in human cholangiocytes. Hepatol. 2012;55:173–183.
  • Fickert P, Wagner M, Marschall HU, et al. 24-norUrsodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology. 2006;130:465–481.
  • Halilbasic E, Fiorotto R, Fickert P, et al. Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2−/− mice. Hepatol. 2009;49:1972–1981.
  • Trauner M, Fuchs CD, Halilbasic E, et al. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatol. 2017;65:1393–1404.
  • Buko VU, Lukivskaya OY, Naruta EE, et al. Protective effects of norursodeoxycholic acid versus ursodeoxycholic acid on thioacetamide-induced rat liver fibrosis. J Clin Exp Hepatol. 2014;4:293–301.
  • Lindor KD. Ursodiol for primary sclerosing cholangitis. N Engl J Med. 1997;336:691–695.
  • Olsson R, Boberg KM, De-Muckadell OS, et al. High-dose ursodeoxycholic acid in primary sclerosing cholangitis: a 5-year multicenter, randomized, controlled study. Gastroenterology. 2005;129:1464–1472.
  • European association for the study of the liver. EASL clinical practice guidelines: management of cholestatic liver diseases. J Hepatol. 2009;51:237–267.
  • Lindor KD, Kowdley KV, Luketic VA, et al. High‐dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatol. 2009;50:808–814.
  • Lindor KD, Kowdley KV, Harrison ME. ACG clinical guideline: primary sclerosing cholangitis. Am J Gastroenterol. 2015;110:646–659.
  • Fickert P, Hirschfield GM, Denk G, et al. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J Hepatol. 2017;67:549–558.
  • Traussnigg S, Schattenberg JM, Demir M, et al. norUrsodeoxycholic acid (norUDCA) improves non-alcoholic fatty liver disease (NAFLD): results from a randomized placebo-controlled, double-blind phase IIa study. Hepatol. 2017;66:106A–107A.
  • Arab JP, Karpen SJ, Dawson PA, et al. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatol. 2017;65:350–362.
  • Trauner-Wien M, Manns-Hannover M, Boberg-Oslo K norUrsodeoxycholic acid in the treatment of primary sclerosing cholangitis. U S National Library of Medicine; 2015 December. (ClinicalTrials.gov, NCT01755507).
  • Trauner M, Hofmann A, Fickert P 24-norUDCA for treating autoimmune hepatitis. Cyprus patent no. CY1117959T1. 2017 April 28.
  • Trauner M, Hofmann A, Fickert P Use of 24-nor-UDCA for the treatment of cholestatic liver diseases. Hungary patent no. HUE028336T2. 2016 December 28.
  • Moneta GL, Taylor DC, Helton WS, et al. Duplex ultrasound measurement of postprandial intestinal blood flow: effect of meal composition. Gastroenterology. 1988;95:1294–1301.
  • Albillos A, Bañares R, González M, et al. The extent of the collateral circulation influences the postprandial increase in portal pressure in patients with cirrhosis. Gut. 2007;56:259–264.
  • Lee SS, Hadengue A, Moreau R, et al. Postprandial hemodynamic responses in patients with cirrhosis. Hepatol. 1988;8:647–651.
  • Shah V, Toruner M, Haddad F, et al. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology. 1999;117:1222–1228.
  • Bellis L, Berzigotti A, Abraldes JG, et al. Low doses of isosorbide mononitrate attenuate the postprandial increase in portal pressure in patients with cirrhosis. Hepatol. 2003;37:378–384.
  • Fiorucci S, Mencarelli A, Palazzetti B, et al. An NO derivative of ursodeoxycholic acid protects against Fas-mediated liver injury by inhibiting caspase activity. Proc Natl Acad Sci USA. 2001;98:2652–2657.
  • Fiorucci S, Antonelli E, Morelli O, et al. NCX-1000, a NO-releasing derivative of ursodeoxycholic acid, selectively delivers NO to the liver and protects against development of portal hypertension. Proc Natl Acad Sci USA. 2001;98:8897–8902.
  • Fiorucci S, Antonelli E, Brancaleone V, et al. NCX-1000, a nitric oxide-releasing derivative of ursodeoxycholic acid, ameliorates portal hypertension and lowers norepinephrine-induced intrahepatic resistance in the isolated and perfused rat liver. J Hepatol. 2003;39:932–939.
  • Fiorucci S, Antonelli E, Tocchetti P, et al. Treatment of portal hypertension with NCX‐1000, a liver‐specific NO donor: A review of its current status. Cardiovasc Drug Rev. 2004;22:135–146.
  • Beuers U. Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat Clin Pract Gastr. 2006;3:318–328.
  • Loureiro-Silva MR, Cadelina GW, Iwakiri Y, et al. A liver-specific nitric oxide donor improves the intra-hepatic vascular response to both portal blood flow increase and methoxamine in cirrhotic rats. J Hepatol. 2003;39:940–946.
  • Bosch J, Garcia-Pagán JC, Berzigotti A, et al. Measurement of portal pressure and its role in the management of chronic liver disease. Semin Liver Dis. 2006;26:348–362.
  • Hernández‐Guerra M, García‐Pagán JC, Turnes J, et al. Ascorbic acid improves the intrahepatic endothelial dysfunction of patients with cirrhosis and portal hypertension. Hepatol. 2006;43:485–491.
  • Zafra C, Abraldes JG, Turnes J, et al. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology. 2004;126:749–755.
  • Berzigotti A, Bellot P, De-Gottardi A, et al. NCX-1000, a nitric oxide–releasing derivative of UDCA, does not decrease portal pressure in patients with cirrhosis: results of a randomized, double-blind, dose-escalating study. Am J Gastroenterol. 2010;105:1094–1101.
  • Sun J, Li M, Fan S, et al. A novel liver-targeted nitric oxide donor UDCA-Thr-NO protects against cirrhosis and portal hypertension. Am J Transl Res. 2018;10:392.
  • Forest laboratories. preliminary efficacy and tolerability of oral NCX-1000 after repeated administrations in patients with portal hypertension: a double-blind dose escalating study. U S National Library of Medicine; 2007 February. (ClinicalTrials.gov, NCT00414869).
  • Bloom S, Kemp W, Lubel J. Portal hypertension: pathophysiology, diagnosis and management. Intern Med J. 2015;45:16–26.
  • Atucha NM, Nadal F, Iyú D, et al. Role of vascular nitric oxide in experimental liver cirrhosis. Curr Vasc Pharmacol. 2005;3:81–85.
  • Hu LS, George J, Wang JH. Current concepts on the role of nitric oxide in portal hypertension. World J Gastroenterol. 2013;19:1707.
  • Jin XY, Fan SY, Li HW, et al. Novel liver-specific nitric oxide (NO) releasing drugs with bile acid as both NO carrier and targeting ligand. Chinese Chem Lett. 2014;25:787–790.
  • Li MY, He XH, Tao L, et al. Design and synthesis of liver targeted NO-releasing drugs with bile acids as carriers. Chinese J Org Chem. 2008;28:2170–2174.
  • Anfuso B, Tiribelli C, Adorini L, et al. Obeticholic acid and INT-767 modulate collagen deposition in a NASH in vitro model. Sci Rep. 2020;10:1–2.
  • Rizzo G, Passeri D, De Franco F, et al. Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. Mol Pharmacol. 2010;78:617–630.
  • Roda A, Pellicciari R, Gioiello A, et al. Semisynthetic bile acid FXR and TGR5 agonists: physicochemical properties, pharmacokinetics, and metabolism in the rat. J Pharmacol Exp Ther. 2014;350:56–68.
  • Hu YB, Liu XY, Zhan W. Farnesoid X receptor agonist INT-767 attenuates liver steatosis and inflammation in rat model of nonalcoholic steatohepatitis. Drug Des Dev Ther. 2018;12:2213.
  • Pathak P, Liu H, Boehme S, et al. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism. J Biol Chem. 2017;292:11055–11069.
  • Wang X, Herman-Edelstein M, Levi J, et al. Dual activation of FXR and TGR5 by INT-767 mediates protection from diabetic nephropathy and retinopathy. Am J Soc Nephrol. 2015;26:169A.
  • Baghdasaryan A, Claudel T, Gumhold J, et al. Dual farnesoid X receptor/TGR5 agonist INT‐767 reduces liver injury in the Mdr2−/−(Abcb4−/−) mouse cholangiopathy model by promoting biliary HCO output. Hepatol. 2011;54:1303–1312.
  • Comeglio P, Cellai I, Mello T, et al. INT-767 prevents NASH and promotes visceral fat brown adipogenesis and mitochondrial function. J Endocrinol. 2018;238:107–127.
  • Roth JD, Feigh M, Veidal SS, et al. INT-767 improves histopathological features in a diet-induced ob/ob mouse model of biopsy-confirmed non-alcoholic steatohepatitis. World J Gastroenterol. 2018;24:195.
  • McMahan RH, Wang XX, Cheng LL, et al. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem. 2013;288:11761–11770.
  • Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028.
  • Pellicciari R, Gioiello A, Macchiarulo A, et al. Discovery of 6α-ethyl-23 (S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J Med Chem. 2009;52:7958–7961.
  • Pellicciari R, Sato H, Gioiello A, et al. Nongenomic actions of bile acids. Synthesis and preliminary characterization of 23-and 6, 23-alkyl-substituted bile acid derivatives as selective modulators for the G-protein coupled receptor TGR5. J Med Chem. 2007;50:4265–4268.
  • Gioiello A, Rosatelli E, Nuti R, et al. Patented TGR5 modulators: a review (2006–present). Expert Opin Ther Pat. 2012;22:1399–1414.
  • Pols TW, Nomura M, Oosterveer MH, et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 2011;14:747–757.
  • Iracheta‐Vellve A, Calenda CD, Petrasek J, et al. FXR and TGR5 agonists ameliorate liver injury, steatosis, and inflammation after binge or prolonged alcohol feeding in mice. Hepatol Commun. 2018;2:1379–1391.
  • Yoshii M, Mosbach EH, Schteingart CD, et al. Chemical synthesis and hepatic biotransformation of 3 alpha, 7 alpha-dihydroxy-7 beta-methyl-24-nor-5 beta-cholan-23-oic acid, a 7-methyl derivative of norchenodeoxycholic acid: studies in the hamster. J Lipid Res. 1991;32:1729–1740.
  • Wang XX, Wang D, Luo Y, et al. FXR/TGR5 dual agonist prevents progression of nephropathy in diabetes and obesity. J Am Soc Nephrol. 2018;29:118–137.
  • Li B, Yang N, Li C, et al. INT-777, a bile acid receptor agonist, extenuates pancreatic acinar cells necrosis in a mouse model of acute pancreatitis. Biochem Biophys Res Commun. 2018;503:38–44.
  • Keitel V, Donner M, Winandy S, et al. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun. 2008;372:78–84.
  • US FDA approval for PBC and NASH. [cited 2020 Jul 10]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/207999s003lbl.pdf, https://www.healio.com/news/hepatology/20191126/fda-accepts-nda-for-ocaliva-for-the-treatment-of-nash#:~:text=The%20FDA%20accepted%20the%20first,date%20of%20March%2026%2C%202020.
  • Sepe V, Renga B, Festa C, et al. Modification on ursodeoxycholic acid (UDCA) scaffold: discovery of bile acid derivatives as selective agonists of cell-surface G-protein coupled bile acid receptor 1 (GP-BAR1). J Med Chem. 2014;57:7687–7701.
  • Stahlberg D, Angelin B, Einarsson K. Effects of treatment with clofibrate, bezafibrate, and ciprofibrate on the metabolism of cholesterol in rat liver microsomes. J Lipid Res. 1989;30:953–958.
  • Zhu P, Huang W, Li J, et al. Design, synthesis chalcone derivatives as AdipoR agonist for type 2 diabetes. Chem Biol Drug Des. 2018;92:1525–1536.
  • Gege C, Hambruch E, Hambruch N, et al. Nonsteroidal FXR ligands: current status and clinical applications. Bile Acids and Their Receptors. 2019:167–205.
  • Wang H, He Q, Wang G, et al. FXR modulators for enterohepatic and metabolic diseases. Expert Opin Ther Pat. 2018;28:765–782.
  • Benson JM, Peritt D, Scallon BJ, et al. Discovery and mechanism of ustekinumab: a human monoclonal antibody targeting interleukin-12 and interleukin-23 for treatment of immune-mediated disorders. MAbs. 2011;3:535–545. Taylor & Francis
  • Moreland L, Bate G, Kirkpatrick P. Abatacept. Nat Rev Drug Discov. 2006;5:185–186. DOI:10.1038/nrd1989
  • Cui X, Du J, Jia Z, et al. A green and facile synthesis of an industrially important quaternary heterocyclic intermediates for baricitinib. BMC Chem. 2019;13:1–7.
  • Bosch X, Ramos-Casals M, Khamashta MA, editors. Drugs targeting B-cells in autoimmune diseases. Berlin: Springer; 2014. DOI:10.1007/978-3-0348-0706-7
  • Starke I, Dahlstrom MUJ, Blomberg D, et al. Benzothiazepine and benzothiadiazepine derivatives with ileal bile acid transport (ibat) inhibitory activity for the treatment hyperlipidaemia. WO2003022286A1, 20 March 2003.
  • Harrison SA, Rossi SJ, Paredes AH, et al. NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis. Hepatol. 2020;71:1198–1212.
  • Dwivedi SPD, Singh RC, Patel V, et al. Polymorphic form of pyrrole derivative and intermediate thereof. WO2015029066A1, 05 March 2015.
  • Zhang R, Wang A, DeAngelis A, et al. Discovery of para-alkylthiophenoxyacetic acids as a novel series of potent and selective PPARδ agonists. Bioorg Med Chem Lett. 2007;17:3855–3859.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.