340
Views
9
CrossRef citations to date
0
Altmetric
Review

The use of peripheral blood mononuclear cells in celiac disease diagnosis and treatment

, ORCID Icon, , &
Pages 305-316 | Received 25 Sep 2020, Accepted 09 Nov 2020, Published online: 26 Nov 2020

References

  • Dieterich W, Ehnis T, Bauer M, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med. 1997;3(7):797–801.
  • Aleanzi M, Demonte AM, Esper C, et al. Celiac disease: antibody recognition against native and selectively deamidated gliadin peptides. Clin Chem. 2001;47(11):2023–2028.
  • Ludvigsson JF, Bai JC, Biagi F, et al. Diagnosis and management of adult coeliac disease: guidelines from the British society of gastroenterology. Gut. 2014;63:1210–1228.
  • Husby S, Koletzko S, Korponay-Szabó I, et al. European society paediatric gastroenterology, hepatology and nutrition guidelines for diagnosing coeliac disease 2020. J Pediatr Gastroenterol Nutr. 2020;70(1):141–156.
  • Popp A, Kivelä L, Fuchs V, et al. Diagnosing celiac disease: towards wide-scale screening and serology-based criteria? Gastroenterol Res Pract. 2019;2019:2916024.
  • Sollid LM. The roles of MHC class II genes and post-translational modification in celiac disease. Immunogenetics. 2017;69:605–616.
  • Shan L, Qiao S-W, Arentz-Hansen H, et al. Identification and analysis of multivalent proteolytically resistant peptides from gluten: implications for celiac sprue. J Proteome Res. 2005;4(5):1732–1741.
  • Molberg Ø, Mcadam SN, Körner R, et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med. 1998;4(6):713–717.
  • Stamnaes J, Sollid LM. Celiac disease: autoimmunity in response to food antigen. Semin Immunol. 2015;27(5):343–352.
  • Christophersen A, Ráki M, Bergseng E, et al., Tetramer-visualized gluten-specific CD4+ T cells in blood as a potential diagnostic marker for coeliac disease without oral gluten challenge. United Eur Gastroenterol J. 2(4): 268–278. 2014.
  • Risnes LF, Christophersen A, Dahal-Koirala S, et al. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. J Clin Invest. 2018;128(6):2642–2650.
  • Jabri B, Sollid LMT. T cells in celiac disease. J Immunol. 2017;198(8):3005–3014.
  • Setty M, Discepolo V, Abadie V, et al. Distinct and synergistic contributions of epithelial stress and adaptive immunity to functions of intraepithelial killer cells and active celiac disease. Gastroenterology. 2015;143(3):681–691.
  • Abadie V, Kim SM, Lejeune T, et al. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature. 2020;578(7796):600–604.
  • Hüe S, Mention -J-J, Monteiro RC, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity. 2004;21(3):367–377.
  • Meresse B, Chen Z, Ciszewski C, et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity. 2004;21(3):357–366.
  • Anderson RP, van Heel DA, Tye-Din JA, et al. T cells in peripheral blood after gluten challenge in coeliac disease. Gut. 2005;54(9):1217–1223.
  • Camarca A, Radano G, Di Mase R, et al. Short wheat challenge is a reproducible in-vivo assay to detect immune response to gluten. Clin Exp Immunol. 2012;169(2):129–136.
  • Fuchs V, Kurppa K, Huhtala H, et al. Serology-based criteria for adult coeliac disease have excellent accuracy across the range of pre-test probabilities. Aliment Pharmacol Ther. 2019;49(3):277–284.
  • Schiepatti A, Sanders DS, Biagi F. Seronegative coeliac disease: clearing the diagnostic dilemma. Curr Opin Gastroenterol. 2018;34(3):154–158.
  • Taavela J, Koskinen O, Huhtala H, et al. Validation of morphometric analyses of small-intestinal biopsy readouts in celiac disease. PLoS One. 2013;8(10):e76163.
  • Schiepatti A, Sanders DS, Zuffada M, et al. Overview in the clinical management of patients with seronegative villous atrophy. Eur J Gastroenterol Hepatol. 2019;31(4):409–417.
  • Silvester JA, Kurada S, Szwajcer A, et al. Tests for serum transglutaminase and endomysial antibodies do not detect most patients with celiac disease and persistent villous atrophy on gluten-free diets: a meta-analysis. Gastroenterology. 2017;153(3):689–701.e1.
  • Lerner BA, Green PHR, Lebwohl B. Going against the grains: gluten-free diets in patients without celiac disease-worthwhile or not? Dig Dis Sci. 2019;64:1740–1747.
  • Bruins MJ. The clinical response to gluten challenge: a review of the literature. Nutrients. 2013;5(11):4614–4641.
  • Leffler D, Schuppan D, Pallav K, et al. Kinetics of the histological, serological and symptomatic responses to gluten challenge in adults with coeliac disease. Gut. 2013;62(7):996–1004.
  • Sarna VK, Skodje GI, Reims HM, et al. HLA-DQ:gluten tetramer test in blood gives better detection of coeliac patients than biopsy after 14-day gluten challenge. Gut. 2018;67(9):1606–1613.
  • Pinto-Sánchez MI, Causada-Calo N, Bercik P, et al. Safety of adding oats to a gluten-free diet for patients with celiac disease: systematic review and meta-analysis of clinical and observational studies. Gastroenterology. 2017;153(2):395–409.e3.
  • Lionetti E, Gatti S, Galeazzi T, et al. Safety of oats in children with celiac disease: a double-blind, randomized, placebo-controlled trial. J Pediatr. 2018;194:116–122.e2.
  • Lindfors K, Ciacci C, Kurppa K, et al. Coeliac disease. Nat Rev Dis Prim. 2019;5:1–37.
  • Murray JA, Watson T, Clearman B, et al. Effect of a gluten-free diet on gastrointestinal symptoms in celiac disease. Am J Clin Nutr. 2004;79(4):669–673.
  • Casellas F, Rodrigo L, Vivancos JL, et al. Factors that impact health-related quality of life in adults with celiac disease: a multicenter study. World J Gastroenterol. 2008;14(1):46–52.
  • Jericho H, Sansotta N, Guandalini S. Extraintestinal manifestations of celiac disease: effectiveness of the gluten-free diet. J Pediatr Gastroenterol Nutr. 2017;65(1):75–79.
  • Ilus T, Kaukinen K, Virta LJ, et al. Incidence of malignancies in diagnosed celiac patients: a population-based estimate. Am J Gastroenterol. 2014;109(9):1471–1477.
  • Zylberberg HM, Lebwohl B, RoyChoudhury A, et al. Predictors of improvement in bone mineral density after celiac disease diagnosis. Endocrine. 2018;59(2):311–318.
  • Laurikka P, Salmi T, Collin P, et al. Gastrointestinal symptoms in celiac disease patients on a long-term gluten-free diet. Nutrients. 2016;8(7):429.
  • Sansotta N, Amirikian K, Guandalini S, et al. Celiac disease symptom resolution: effectiveness of the gluten-free diet. J Pediatr Gastroenterol Nutr. 2018;66(1):48–52.
  • Stasi E, Marafini I, Caruso R, et al. Frequency and cause of persistent symptoms in celiac disease patients on a long-term gluten-free diet. J Clin Gastroenterol. 2016;50(3):239–243.
  • Francavilla R, Cristofori F, Vacca M, et al. Advances in understanding the potential therapeutic applications of gut microbiota and probiotic mediated therapies in celiac disease. Expert Rev Gastroenterol Hepatol. 2020;14(5):323–333.
  • Gibert A, Kruizinga AG, Neuhold S, et al. Might gluten traces in wheat substitutes pose a risk in patients with celiac disease? A population-based probabilistic approach to risk estimation. Am J Clin Nutr. 2013;97(1):109–116.
  • Thompson T, Simpson S. A comparison of gluten levels in labeled gluten-free and certified gluten-free foods sold in the United States. Eur J Clin Nutr. 2015;69(2):143–146.
  • Lerner BA, Phan Vo LT, Yates S, et al. Detection of gluten in gluten-free labeled restaurant food: analysis of crowd-sourced data. Am J Gastroenterol. 2019;114(5):792–797.
  • Weisbrod VM, Silvester JA, Raber C, et al. Preparation of gluten-free foods alongside gluten-containing food may not always be as risky for celiac patients as diet guides suggest. Gastroenterology. 2020;158(1):273–275.
  • Halmos EP, Di Bella CA, Webster R, et al. Gluten in “gluten-free” food from food outlets in Melbourne: A cross-sectional study. Med J Aust. 2018;209(1):42–43.
  • Wolf RL, Lebwohl B, Lee AR, et al. Hypervigilance to a gluten-free diet and decreased quality of life in teenagers and adults with celiac disease. Dig Dis Sci. 2018;63(6):1438–1448.
  • Leinonen H, Kivelä L, Lähdeaho M-L, et al. Daily life restrictions are common and associated with health concerns and dietary challenges in adult celiac disease patients diagnosed in childhood. Nutrients. 2019;11(8):1718.
  • Panagiotou S, Kontogianni MD. The economic burden of gluten-free products and gluten-free diet: a cost estimation analysis in Greece. J Hum Nutr Diet Off J Br Diet Assoc. 2017;30(6):746–752.
  • Lee AR, Wolf RL, Lebwohl B, et al. Persistent economic burden of the gluten free diet. Nutrients. 2019;11(2):399.
  • Punshon T, Jackson BP. Essential micronutrient and toxic trace element concentrations in gluten containing and gluten-free foods. Food Chem. 2018;252:258–264.
  • Ciccone A, Gabrieli D, Cardinale R, et al. Metabolic alterations in celiac disease occurring after following a gluten-free diet. Digestion. 2019;100(4):262–268.
  • Reilly NR, Lebwohl B, Hultcrantz R, et al. Increased risk of non-alcoholic fatty liver disease after diagnosis of celiac disease. J Hepatol. 2015;62(6):1405–1411.
  • Lebwohl B, Cao Y, Zong G, et al. Long term gluten consumption in adults without celiac disease and risk of coronary heart disease: prospective cohort study. BMJ. 2017;357:j1892.
  • García-Molina MD, Giménez MJ, Sánchez-León S, et al. Gluten free wheat: are we there? Nutrients. 2019;11(3):487.
  • Tanner GJ, Howitt CA, Forrester RI, et al. Dissecting the T-cell response to hordeins in coeliac disease can develop barley with reduced immunotoxicity. Aliment Pharmacol Ther. 2010;32:1184–1191.
  • Daveson AJM, Ee HC, Andrews JM, et al. Epitope-specific immunotherapy targeting CD4-positive t cells in celiac disease: safety, pharmacokinetics, and effects on intestinal histology and plasma cytokines with escalating dose regimens of Nexvax2 in a randomized, double-blind, placebo-controlled. EBioMedicine. 2017;26:78–90.
  • Lähdeaho M-L, Kaukinen K, Laurila K, et al. Glutenase ALV003 attenuates gluten-induced mucosal injury in patients with celiac disease. Gastroenterology. 2014;146(7):1649–1658.
  • Cavaletti L, Taravella A, Carrano L, et al. E40, a novel microbial protease efficiently detoxifying gluten proteins, for the dietary management of gluten intolerance. Sci Rep. 2019;9(1):1–11.
  • Wolf C, Siegel JB, Tinberg C, et al. Engineering of Kuma030: a gliadin peptidase that rapidly degrades immunogenic gliadin peptides in gastric conditions. J Am Chem Soc. 2015;137(40):13106–13113.
  • Autissier P, Soulas C, Burdo TH, et al. Evaluation of a 12-color flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans. Cytometry A. 2010;77:410–419.
  • Kleiveland CR. Peripheral blood mononuclear cells. In: Verhoeckx K, Cotter P, López-Expósito I. et al.editors. The Impact of food bioactives on health: in vitro and ex vivo models. Cham: Springer International Publishing; 2015. p. 161–167.
  • Bascuñán KA, Pérez-Bravo F, Gaudioso G, et al. A miRNA-based blood and mucosal approach for detecting and monitoring celiac disease. Dig Dis Sci. 2019;65(7):1982–1991.
  • Escudero-Hernández C, Á M, de Pedro Andrés R, et al. Circulating dendritic cells from celiac disease patients display a gut-homing profile and are differentially modulated by different gliadin-derived peptides. Mol Nutr Food Res. 2020;64(6):1–10.
  • Snir O, Mesin L, Gidoni M, et al. Analysis of celiac disease autoreactive gut plasma cells and their corresponding memory compartment in peripheral blood using high-throughput sequencing. J Immunol. 2015;194(12):5703–5712.
  • Yung BS, Pugh H, Generotti AA, et al. Novel IFN-γ ELISpot reveals robust T cell responses elicited after influenza nucleoprotein DNA vaccination in New Zealand white rabbits. Vaccine. 2019;37(7):903–909.
  • Richeldi L, Losi M, Cerri S, et al. Using ELISpot technology to improve the diagnosis of tuberculosis infection: from the bench to the T-SPOT.TB assay. Expert Rev Respir Med. 2008;2(2):253–260.
  • Kreher CR, Dittrich MT, Guerkov R, et al. CD4+ and CD8+ cells in cryopreserved human PBMC maintain full functionality in cytokine ELISPOT assays. J Immunol Methods. 2003;278(1–2):79–93.
  • Anthony DD, Lehmann PV. T-cell epitope mapping using the ELISPOT approach. Methods. 2003;29(3):260–269.
  • Ráki M, Fallang L-E, Brottveit M, et al., Tetramer visualization of gut-homing gluten-specific T cells in the peripheral blood of celiac disease patients. Proc Natl Acad Sci USA. 104(8): 2831–2836. 2007.
  • Anderson RP, Degano P, Godkin AJ, et al. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat Med. 2000;6:337–342.
  • Arentz-Hansen H, Fleckenstein B, Molberg Ø, et al. The molecular basis for oat intolerance in patients with celiac disease. PLoS Med. 2004;1(1):e1.
  • Tye-Din JA, Stewart JA, Dromey JA, et al., Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci Transl Med. 2(41): 41ra51. 2010.
  • Vader LW, Stepniak DT, Bunnik EM, et al. Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology. 2003;125(4):1105–1113.
  • Hardy MY, Tye-Din JA, Stewart JA, et al. Ingestion of oats and barley in patients with celiac disease mobilizes cross-reactive T cells activated by avenin peptides and immuno-dominant hordein peptides. J Autoimmun. 2015;56:56–65.
  • Hardy MY, Russell AK, Pizzey C, et al. Characterisation of clinical and immune reactivity to barley and rye ingestion in children with coeliac disease. Gut. 2020;69:830-840.
  • Sollid LM, Qiao S-W, Anderson RP, et al. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics. 2012;64(6):455–460.
  • Sollid LM, Tye-Din JA, Qiao S-W, et al., Update 2020: nomenclature and listing of celiac disease-relevant gluten epitopes recognized by CD4(+) T cells. Immunogenetics. 72(1–2): 85–88. 2020.
  • Goel G, King T, Daveson AJ, et al. Epitope-specific immunotherapy targeting CD4-positive T cells in coeliac disease: two randomised, double-blind, placebo-controlled phase 1 studies. Lancet Gastroenterol Hepatol. 2017;2(7):479–493.
  • Truitt KE, Anderson RP. Editorial: a non-dietary treatment for coeliac disease—two steps forward, one step back? Authors’ reply. Aliment Pharmacol Ther. 2019;50(8):956–957.
  • Anderson RP, van Heel DA, Tye-Din JA, et al. Antagonists and non-toxic variants of the dominant wheat gliadin T cell epitope in coeliac disease. Gut. 2006;55(4):485–491.
  • Picascia S, Camarca A, Malamisura M, et al. In celiac disease patients the in vivo challenge with the diploid triticum monococcum elicits a reduced immune response compared to hexaploid wheat. Mol Nutr Food Res. 2020;64(11):1–9.
  • Grover J, Chhuneja P, Midha V, et al. Variable immunogenic potential of wheat: prospective for selection of innocuous varieties for celiac disease patients via in vitro approach. Front Immunol. 2019;10:84.
  • Silano M, Vincentini O, De Vincenzi M. Toxic, immunostimulatory and antagonist gluten peptides in celiac disease. Curr Med Chem. 2009;16(12):1489–1498.
  • Daveson AJ, Jones DM, Gaze S, et al. Effect of hookworm infection on wheat challenge in celiac disease – a randomised double-blinded placebo controlled trial. PLoS One. 2011;6(3):e17366.
  • Murray JA, Kelly CP, Green PHR, et al. no difference between latiglutenase and placebo in reducing villous atrophy or improving symptoms in patients with symptomatic celiac disease. Gastroenterology. 2017;152(4):787–798.e2.
  • Picascia S, Mandile R, Auricchio R, et al. Gliadin-specific T-cells mobilized in the peripheral blood of coeliac patients by short oral gluten challenge: clinical applications. Nutrients. 2015;7(12):10020–10031.
  • Kalliokoski S, Mansikka E, de Kauwe A, et al. Gliadin-induced ex vivo T-cell response in dermatitis herpetiformis: a predictor of clinical relapse on gluten challenge? J Invest Dermatol. 2020;15(9):1867–1869.e2.
  • Ortiz Sánchez JP, de la Barca AMC. Effect of maize prolamins on peripheral blood mononuclear cells from celiac disease patients. Immunome Res. 2016;12(1). 10.4172/1745-7580.10000110
  • Silano M, Benedetto RD, Maialetti F, et al. Avenins from different cultivars of oats elicit response by coeliac peripheral lymphocytes. Scand J Gastroenterol. 2007;42(11):1302–1305.
  • Ontiveros N, Tye-Din JA, Hardy MY, et al. Ex-vivo whole blood secretion of interferon (IFN)-γ and IFN-γ-inducible protein-10 measured by enzyme-linked immunosorbent assay are as sensitive as IFN-γ enzyme-linked immunospot for the detection of gluten-reactive T cells in human leucocyte antigen (HLA)-DQ2·5(+) -associated coeliac disease. Clin Exp Immunol. 2014;175:305–315.
  • Silano M, Di Benedetto R, Trecca A, et al. A decapeptide from durum wheat prevents celiac peripheral blood lymphocytes from activation by gliadin peptides. Pediatr Res. 2007;61(1):67–71.
  • Sánchez-León S, Giménez MJ, Comino I, et al. Stimulatory response of celiac disease peripheral blood mononuclear cells induced by RNAi wheat lines differing in grain protein composition. Nutrients. 2019;11(12):2933.
  • Goel G, Tye-Din JA, Qiao S-W, et al. Cytokine release and gastrointestinal symptoms after gluten challenge in celiac disease. Sci Adv. 2019;5(8):eaaw7756.
  • Altman JD, Moss PAH, Goulder PJR, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996;274(5284):94–96.
  • Christophersen A. Peptide-MHC class I and class II tetramers: from flow to mass cytometry. Hla. 2020;95(3):169–178.
  • Jansen DTSL, Ramnoruth N, Loh KL, et al. Flow cytometric clinical immunomonitoring using peptide-MHC class II tetramers: optimization of methods and protocol development. Front Immunol. 2018;9:1–10.
  • Quarsten H, McAdam SN, Jensen T, et al. Staining of celiac disease-relevant t cells by peptide-DQ2 multimers. J Immunol. 2001;167(9):4861–4868.
  • Brottveit M, Ráki M, Bergseng E, et al. Assessing possible celiac disease by an HLA-DQ2-gliadin tetramer test. Am J Gastroenterol. 2011;106(7):1318–1324.
  • Dahal-Koirala S, Risnes LF, Christophersen A, et al. TCR sequencing of single cells reactive to DQ2.5-glia-α2 and DQ2.5-glia-ω2 reveals clonal expansion and epitope-specific V-gene usage. Mucosal Immunol. 2016;9(3):587–596.
  • Sarna VK, Lundin KEA, Mørkrid L, et al. HLA-DQ–gluten tetramer blood test accurately identifies patients with and without celiac disease in absence of gluten consumption. Gastroenterology. 2018;154(4):886–896.e6.
  • Christophersen A, Risnes LF, Bergseng E, et al. Healthy HLA-DQ2.5 + subjects lack regulatory and memory T cells specific for immunodominant gluten epitopes of celiac disease. J Immunol. 2016;196(6):2819–2826.
  • Du Pré MF, Van Berkel LA, Ráki M, et al. CD62Lneg CD38+ expression on circulating CD4+ T cells identifies mucosally differentiated cells in protein fed mice and in human celiac disease patients and controls. Am J Gastroenterol. 2011;106(6):1147–1159.
  • Zühlke S, Risnes LF, Dahal-Koirala S, et al. CD38 expression on gluten-specific T cells is a robust marker of gluten re-exposure in coeliac disease. United Eur Gastroenterol J. 2019;7(10):1337–1344.
  • Christophersen A, Lund EG, Snir O, et al. Distinct phenotype of CD4+ T cells driving celiac disease identified in multiple autoimmune conditions. Nat Med. 2019;25:734–737.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.