266
Views
0
CrossRef citations to date
0
Altmetric
Review

Elucidating the role of extracellular vesicles in liver injury induced by HIV

&
Pages 701-708 | Received 02 Mar 2023, Accepted 26 Jun 2023, Published online: 03 Jul 2023

References

  • Lorenc A, Ananthavarathan P, Lorigan J, et al. The prevalence of comorbidities among people living with HIV in Brent: a diverse London Borough. London J Prim Care (Abingdon). 2014;6(4):84–90. doi: 10.1080/17571472.2014.11493422
  • Sherman KE, Peters MG, Thomas DL. HIV and the liver. Top Antivir Med. 2019;27(3):101–110.
  • Mata-Marin JA, Gaytan-Martinez J, Grados-Chavarria BH, et al. Correlation between HIV viral load and aminotransferases as liver damage markers in HIV infected naive patients: a concordance cross-sectional study. Virol J. 2009;6(1):181. doi: 10.1186/1743-422X-6-181
  • Esposito A, Conti V, Cagliuso M, et al. Management of HIV-1 associated hepatitis in patients with acquired immunodeficiency syndrome: role of a successful control of viral replication. AIDS Res Ther. 2011;8(9). doi: 10.1186/1742-6405-8-9
  • Cai J, Osikowicz M, Sebastiani G. Clinical significance of elevated liver transaminases in HIV-infected patients. AIDS. 2019;33(8):1267–1282. doi: 10.1097/QAD.0000000000002233
  • van Welzen BJ, Mudrikova T, El Idrissi A, et al. A review of non-alcoholic fatty liver disease in HIV-Infected patients: the next big thing? Infect Dis Ther. 2019;8(1):33–50. doi: 10.1007/s40121-018-0229-7
  • van Welzen BJ, Smit C, Boyd A, et al. Decreased all-cause and liver-related mortality risk in HIV/Hepatitis B virus coinfection coinciding with the introduction of tenofovir-containing combination antiretroviral therapy. Open Forum Infect Dis. 2020;7(7):ofaa226. doi: 10.1093/ofid/ofaa226
  • Price JC, Thio CL. Liver disease in the HIV-infected individual. Clin Gastroenterol Hepatol. 2010;8(12):1002–1012. doi: 10.1016/j.cgh.2010.08.024
  • Ganesan M, Poluektova LY, Kharbanda KK, et al. Liver as a target of human immunodeficiency virus infection. World J Gastroenterol. 2018;24(42):4728–4737. doi: 10.3748/wjg.v24.i42.4728
  • Osna NA, Eguchi A, Feldstein AE, et al. Cell-to-cell communications in alcohol-associated liver disease. Front Physiol. 2022;13:831004. doi:10.3389/fphys.2022.831004
  • Brenchley JM, Douek DC. HIV infection and the gastrointestinal immune system. Mucosal Immunol. 2008;1(1):23–30. doi: 10.1038/mi.2007.1
  • Gruevska A, Moragrega AB, Cossarizza A, et al. Apoptosis of hepatocytes: relevance for HIV-Infected patients under treatment. Cells. 2021;10(2):410. doi: 10.3390/cells10020410
  • Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Bio. 2013;200(4):373–383. doi: 10.1083/jcb.201211138
  • Rahman MA, Patters BJ, Kodidela S, et al. Extracellular vesicles: intercellular mediators in alcohol-induced pathologies. J Neuroimmune Pharmacol. 2020;15(3):409–421. doi: 10.1007/s11481-019-09848-z
  • Bobrie A, Krumeich S, Reyal F, et al. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res. 2012;72(19):4920–4930. doi: 10.1158/0008-5472.CAN-12-0925
  • Jackson CE, Scruggs BS, Schaffer JE, et al. Effects of inhibiting VPS4 support a general role for ESCRTs in extracellular vesicle biogenesis. Biophys J. 2017;113(6):1342–1352. doi: 10.1016/j.bpj.2017.05.032
  • Dagur RS, New-Aaron M, Ganesan M, et al. Alcohol-and-HIV-Induced lysosomal dysfunction regulates extracellular vesicles secretion in vitro and in liver-humanized mice. Biology (Basel). 2021;10(1):29. doi: 10.3390/biology10010029
  • Buratta S, Tancini B, Sagini K, et al. Lysosomal exocytosis, exosome release and secretory autophagy: the autophagic- and endo-lysosomal systems go extracellular. Int J Mol Sci. 2020;21(7):2576. doi: 10.3390/ijms21072576
  • Villarroya-Beltri C, Baixauli F, Mittelbrunn M, et al. Isgylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016;7(1):13588. doi: 10.1038/ncomms13588
  • Saha B, Momen-Heravi F, Furi I, et al. Extracellular vesicles from mice with alcoholic liver disease carry a distinct protein cargo and induce macrophage activation through heat shock protein 90. Hepatology. 2018;67(5):1986–2000. doi: 10.1002/hep.29732
  • Momen-Heravi F, Bala S, Kodys K, et al. Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS. Sci Rep. 2015;5(1):9991. doi: 10.1038/srep09991
  • Eguchi A, Feldstein AE. Extracellular vesicles in non-alcoholic and alcoholic fatty liver diseases. Liver Res. 2018;2(1):30–34. doi: 10.1016/j.livres.2018.01.001
  • Eguchi A, Lazaro RG, Wang J, et al. Extracellular vesicles released by hepatocytes from gastric infusion model of alcoholic liver disease contain a MicroRNA barcode that can be detected in blood. Hepatology. 2017;65(2):475–490. doi: 10.1002/hep.28838
  • Bala S, Petrasek J, Mundkur S, et al. Circulating microRnas in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology. 2012;56(5):1946–1957. doi: 10.1002/hep.25873
  • Sato K, Meng F, Glaser S, et al. Exosomes in liver pathology. J Hepatol. 2016;65(1):213–221. doi: 10.1016/j.jhep.2016.03.004
  • Jiao Y, Xu P, Shi H, et al. Advances on liver cell-derived exosomes in liver diseases. J Cell Mol Med. 2021;25(1):15–26. doi: 10.1111/jcmm.16123
  • Mahmoudi A, Butler AE, Jamialahmadi T, et al. The role of exosomal miRNA in nonalcoholic fatty liver disease. J Cell Physiol. 2022;237(4):2078–2094. doi: 10.1002/jcp.30699
  • Sorop A, Constantinescu D, Cojocaru F, et al. Exosomal microRnas as biomarkers and therapeutic targets for hepatocellular carcinoma. Int J Mol Sci. 2021;22(9):4997. doi: 10.3390/ijms22094997
  • Malhi H. Emerging role of extracellular vesicles in liver diseases. Am J Physiol Gastrointest Liver Physiol. 2019;317(5):G739–G749. doi: 10.1152/ajpgi.00183.2019
  • Hirsova P, Ibrahim SH, Verma VK, et al. Extracellular vesicles in liver pathobiology: small particles with big impact. Hepatology. 2016;64(6):2219–2233. doi: 10.1002/hep.28814
  • Odegaard KE, Chand S, Wheeler S, et al. Role of extracellular vesicles in substance abuse and HIV-Related neurological pathologies. Int J Mol Sci. 2020;21(18):6765. doi: 10.3390/ijms21186765
  • Chen J, Li C, Li R, et al. Exosomes in HIV infection. Curr Opin HIV AIDS. 2021;16(5):262–270. doi: 10.1097/COH.0000000000000694
  • Perez PS, Romaniuk MA, Duette GA, et al. Extracellular vesicles and chronic inflammation during HIV infection. J Extracell Vesicles. 2019;8(1):1687275. doi: 10.1080/20013078.2019.1687275
  • Lee JH, Ostalecki C, Zhao Z, et al. HIV activates the tyrosine kinase hck to secrete ADAM protease-containing extracellular vesicles. EBioMedicine. 2018;28:151–161. doi:10.1016/j.ebiom.2018.01.004
  • Mukhamedova N, Hoang A, Dragoljevic D, et al. Exosomes containing HIV protein Nef reorganize lipid rafts potentiating inflammatory response in bystander cells. PLOS Pathog. 2019;15(7):e1007907. doi: 10.1371/journal.ppat.1007907
  • McNamara RP, Dittmer DP. Extracellular vesicles in virus infection and pathogenesis. Curr Opin Virol. 2020;44:129–138. doi: 10.1016/j.coviro.2020.07.014
  • Tang X, Lu H, Dooner M, et al. Exosomal Tat protein activates latent HIV-1 in primary, resting CD4+ T lymphocytes. JCI Insight. 2018;3(7). doi: 10.1172/jci.insight.95676
  • Arakelyan A, Fitzgerald W, Zicari S, et al. Extracellular vesicles carry HIV Env and facilitate Hiv infection of human lymphoid tissue. Sci Rep. 2017;7(1):1695. doi: 10.1038/s41598-017-01739-8
  • Crane M, Visvanathan K, Lewin SR. HIV infection and TLR signalling in the liver. Gastroenterol Res Pract. 2012;2012:473925.
  • Martínez-González E, Brochado-Kith Ó, Gómez-Sanz A, et al. Comparison of methods and characterization of small RNAs from plasma extracellular vesicles of HIV/HCV coinfected patients. Sci Rep. 2020;10(1):11140. doi: 10.1038/s41598-020-67935-1
  • Chettimada S, Lorenz DR, Misra V, et al. Small RNA sequencing of extracellular vesicles identifies circulating miRnas related to inflammation and oxidative stress in HIV patients. BMC Immunol. 2020;21(1):1–20. doi: 10.1186/s12865-020-00386-5
  • Martinez-Gonzalez E, Brochado-Kith O, Gomez-Sanz A, et al. Comparison of methods and characterization of small RNAs from plasma extracellular vesicles of HIV/HCV coinfected patients. Sci Rep. 2020;10(1):11140. doi: 10.1038/s41598-020-67935-1
  • Chettimada S, Lorenz DR, Misra V, et al. Small RNA sequencing of extracellular vesicles identifies circulating miRnas related to inflammation and oxidative stress in HIV patients. BMC Immunol. 2020;21(1):57. doi: 10.1186/s12865-020-00386-5
  • Rs Gm D, Kidambi S, Poluektova L, et al. Ethanol -and HIV-induced extracellular vesicles regulate liver inflammation via changes in miRNA profiles. Hepatology. 2019;70:846A–847A.
  • van der Heide D, Weiskirchen R, Bansal R. Therapeutic targeting of hepatic macrophages for the treatment of liver diseases. Front Immunol. 2019;10:2852. doi: 10.3389/fimmu.2019.02852
  • Kharbanda KK, Chokshi S, Tikhanovich I, et al. A pathogenic role of non-parenchymal liver cells in alcohol-associated liver disease of infectious and non-infectious origin. Biology (Basel). 2023;12(2):255. doi: 10.3390/biology12020255
  • Gong Y, Rao PSS, Sinha N, et al. The role of cytochrome P450 2E1 on ethanol-mediated oxidative stress and HIV replication in human monocyte-derived macrophages. Biochem Biophys Rep. 2019;17:65–70. doi:10.1016/j.bbrep.2018.11.008
  • Lane BR, Markovitz DM, Woodford NL, et al. TNF-alpha inhibits HIV-1 replication in peripheral blood monocytes and alveolar macrophages by inducing the production of RANTES and decreasing C-C chemokine receptor 5 (CCR5) expression. J Immunol. 1999;163(7):3653–3661. doi: 10.4049/jimmunol.163.7.3653
  • Jaiswal A, Reddy SS, Maurya M, et al. MicroRNA-99a mimics inhibit M1 macrophage phenotype and adipose tissue inflammation by targeting TNFalpha. Cell Mol Immunol. 2019;16(5):495–507. doi: 10.1038/s41423-018-0038-7
  • Rs Gm D, New Aaaron MO, Poluektova LY, et al. Ethanol and HIV induced exosome from hepatocytes activate hepatic stellate cells. J Extracell Vesicles. 2020;9:292.
  • Sadri Nahand J, Bokharaei-Salim F, Karimzadeh M, et al. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med. 2020;21(4):246–278. doi: 10.1111/hiv.12822
  • Witwer KW, Watson AK, Blankson JN, et al. Relationships of PBMC microRNA expression, plasma viral load, and CD4+ T-cell count in HIV-1-infected elite suppressors and viremic patients. Retrovirology. 2012;9(5). doi: 10.1186/1742-4690-9-5
  • Aqil M, Naqvi AR, Mallik S, et al. The HIV Nef protein modulates cellular and exosomal miRNA profiles in human monocytic cells. J Extracell Vesicles. 2014;3(1):23129. doi: 10.3402/jev.v3.23129
  • Crispe IN, Dao T, Klugewitz K, et al. The liver as a site of T-cell apoptosis: graveyard, or killing field? Immunol Rev. 2000;174(1):47–62. doi: 10.1034/j.1600-0528.2002.017412.x
  • Chen Y, Lin H, Cole M, et al. Signature changes in gut microbiome are associated with increased susceptibility to HIV-1 infection in MSM. Microbiome. 2021;9(1):237. doi: 10.1186/s40168-021-01168-w
  • Fisher BS, Fancher KA, Gustin AT, et al. Liver bacterial dysbiosis with non-tuberculosis mycobacteria occurs in siv-infected macaques and persists during antiretroviral therapy. Front Immunol. 2021;12:793842. doi:10.3389/fimmu.2021.793842
  • Anadol E, Schierwagen R, Elfimova N, et al. Circulating microRnas as a marker for liver injury in human immunodeficiency virus patients. Hepatology. 2015;61(1):46–55. doi: 10.1002/hep.27369
  • Murray DD, Suzuki K, Law M, et al. Circulating miR-122 and miR-200a as biomarkers for fatal liver disease in ART-treated, HIV-1-infected individuals. Sci Rep. 2017;7(1):10934. doi: 10.1038/s41598-017-11405-8
  • Franco S, Buccione D, Pluvinet R, et al. Large-scale screening of circulating microRnas in individuals with HIV-1 mono-infections reveals specific liver damage signatures. Antiviral Res. 2018;155:106–114. doi:10.1016/j.antiviral.2018.05.008
  • Franco S, Buccione D, Tural C, et al. Circulating microRNA signatures that predict liver fibrosis progression in patients with HIV-1/hepatitis C virus coinfections. AIDS. 2021;35(9):1355–1363. doi: 10.1097/QAD.0000000000002895
  • Franco S, Llibre JM, Jou T, et al. Normalization of circulating plasma levels of miRnas in HIV-1/HCV co-infected patients following direct-acting antiviral-induced sustained virologic response. Heliyon. 2023;9(1):e12686. doi: 10.1016/j.heliyon.2022.e12686
  • Hu G, Yao H, Chaudhuri AD, et al. Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. Cell Death Dis. 2012;3(8):e381. doi: 10.1038/cddis.2012.114
  • Ganesan M, New-Aaron M, Dagur RS, et al. Alcohol metabolism potentiates HIV-Induced hepatotoxicity: contribution to end-stage liver disease. Biomolecules. 2019;9(12):851. doi: 10.3390/biom9120851
  • Kong L, Cardona Maya W, Moreno-Fernandez ME, et al. Low-level HIV infection of hepatocytes. Virol J. 2012;9(1):157. doi: 10.1186/1743-422X-9-157
  • Xiao P, Usami O, Suzuki Y, et al. Characterization of a CD4-independent clinical HIV-1 that can efficiently infect human hepatocytes through chemokine (C-X-C motif) receptor 4. AIDS. 2008;22(14):1749–1757. doi: 10.1097/QAD.0b013e328308937c
  • Fromentin R, Tardif MR, Tremblay MJ. Inefficient fusion due to a lack of attachment receptor/co-receptor restricts productive human immunodeficiency virus type 1 infection in human hepatoma Huh7.5 cells. J Gen Virol. 2011;92(Pt 3):587–597. doi: 10.1099/vir.0.028746-0
  • New-Aaron M, Thomes PG, Ganesan M, et al. Alcohol-induced lysosomal damage and suppression of lysosome biogenesis contribute to hepatotoxicity in HIV-Exposed liver cells. Biomolecules. 2021;11(10):1497. doi: 10.3390/biom11101497
  • Guan JJ, Zhang XD, Sun W, et al. DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX. Cell Death Dis. 2015;6(1):e1624. doi: 10.1038/cddis.2014.546
  • Takahashi M, Kakudo Y, Takahashi S, et al. Overexpression of DRAM enhances p53-dependent apoptosis. Cancer Med. 2013;2(1):1–10. doi: 10.1002/cam4.39
  • Feldstein AE, Werneburg NW, Li Z, et al. Bax inhibition protects against free fatty acid-induced lysosomal permeabilization. Am J Physiol Gastrointest Liver Physiol. 2006;290(6):G1339–1346. doi: 10.1152/ajpgi.00509.2005
  • Li Z, Berk M, McIntyre TM, et al. The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology. 2008;47(5):1495–1503. doi: 10.1002/hep.22183
  • Donohue TM, Curry-McCoy TV, Nanji AA, et al. Lysosomal leakage and lack of adaptation of hepatoprotective enzyme contribute to enhanced susceptibility to ethanol-induced liver injury in female rats. Alcohol Clin Exp Res. 2007;31(11):1944–1952. doi: 10.1111/j.1530-0277.2007.00512.x
  • Groebner JL, Giron-Bravo MT, Rothberg ML, et al. Alcohol-induced microtubule acetylation leads to the accumulation of large, immobile lipid droplets. Am J Physiol Gastrointest Liver Physiol. 2019;317(4):G373–G386. doi: 10.1152/ajpgi.00026.2019
  • Fernandez DJ, Tuma DJ, Tuma PL. Hepatic microtubule acetylation and stability induced by chronic alcohol exposure impair nuclear translocation of STAT3 and STAT5B, but not Smad2/3. Am J Physiol Gastrointest Liver Physiol. 2012;303(12):G1402–1415. doi: 10.1152/ajpgi.00071.2012
  • Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis. Hepatology. 2004;39(2):273–278. doi: 10.1002/hep.20051
  • Guicciardi ME, Gores GJ. Apoptosis: a mechanism of acute and chronic liver injury. Gut. 2005;54(7):1024–1033. doi: 10.1136/gut.2004.053850
  • M Dr N-A, Koganti S, Ganesan M, et al. Alcohol and HIV-Derived hepatocyte apoptotic bodies induce hepatic stellate cell activation. Biology (Basel). 2022;11:1059.
  • New-Aaron M, Koganti SS, Ganesan M, et al. Hepatocyte-specific triggering of hepatic stellate cell profibrotic activation by apoptotic bodies: the role of hepatoma-derived growth factor, HIV, and ethanol. Int J Mol Sci. 2023;24(6):5346. doi: 10.3390/ijms24065346

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.