314
Views
0
CrossRef citations to date
0
Altmetric
Review

Nutritional aspects of inflammatory bowel disease

, &
Pages 731-740 | Received 26 Nov 2022, Accepted 26 Jun 2023, Published online: 10 Jul 2023

References

  • Day AS, Lemberg DA. Identification and diagnosis of Crohn disease and ulcerative colitis in children. J Paediatr Child Health. 2020;56(11):1731–1734. doi: 10.1111/jpc.14925
  • Piovani D, Danese S, Peyrin-Biroulet L, et al. Inflammatory bowel disease: estimates from the global burden of disease 2017 study. Aliment Pharmacol Ther. 2020;51(2):261–270. doi: 10.1111/apt.15542
  • Mentella MC, Scaldaferri F, Pizzoferrato M, et al. Nutrition, IBD and gut microbiota: a review. Nutrients. 2020;12(4):9442. doi: 10.3390/nu12040944
  • Seyed Tabib NS, Madgwick M, Sudhakar P, et al. Big data in IBD: big progress for clinical practice. Gut. 2020;69(8):1520–1532. doi: 10.1136/gutjnl-2019-320065
  • Windsor JW, Kaplan GG. Evolving Epidemiology of IBD. Curr Gastroenterol Rep. 2019;21(8):40. doi: 10.1007/s11894-019-0705-6
  • Fiorino G, Estevinho MM, Lopes DJM, et al. Inflammatory bowel disease in migrant populations: should we look even further back? Curr Drug Targets. 2021 4;22(15):1706–1715. doi: 10.2174/1389450122666210203193817
  • Ansari I, Raddatz G, Gutekunst J, et al. The microbiota programs DNA methylation to control intestinal homeostasis and inflammation. Nat Microbiol. 2020;5(4):610–619. doi: 10.1038/s41564-019-0659-3
  • Hattori N, Niwa T, Ishida T, et al. Antibiotics suppress colon tumorigenesis through inhibition of aberrant DNA methylation in an azoxymethane and dextran sulfate sodium colitis model. Cancer Sci. 2019;110(1):147–156. doi: 10.1111/cas.13880
  • Lepage P, Hösler R, Spehlmann ME, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 2011;141(1):227–236. doi: 10.1053/j.gastro.2011.04.011
  • Lupp C, Robertson ML, Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of enterobacteriaceae. Cell Host Microbe. 2007;2(2):119–129. doi: 10.1016/j.chom.2007.06.010
  • Frank DN, Robertson CE, Hamm CM, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17(1):179–184. doi: 10.1002/ibd.21339
  • Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15(3):382–392. doi: 10.1016/j.chom.2014.02.005
  • Nishida A, Inoue R, Inatomi O, et al. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1–10. doi: 10.1007/s12328-017-0813-5
  • Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55(2):205–211. doi: 10.1136/gut.2005.073817
  • Willing B, Halfvarson J, Dicksved J, et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. Inflamm Bowel Dis. 2009;15(5):653–660. doi: 10.1002/ibd.20783
  • Adolph TE, Zhang J. Diet fuelling inflammatory bowel diseases: preclinical and clinical concepts. Gut. 2022;71(12):2574–2586. doi: 10.1136/gutjnl-2021-326575
  • Schwärzler J, Mayr L, Vich Vila A, et al. PUFA-Induced metabolic enteritis as a fuel for crohn’s disease. Gastroenterology. 2022;162(6):1690–1704. doi: 10.1053/j.gastro.2022.01.004
  • Khalili H, Chan SSM, Lochhead P, et al. The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2019;15(9):525–535. doi: 10.1038/s41575-018-0022-9
  • Raoul P, Cintoni M, Palombaro M, et al. Food additives, a key environmental factor in the development of IBD through gut dysbiosis. Microorganisms. 2022;10(1):167. doi: 10.3390/microorganisms10010167
  • Ahmad SY, Friel J, Mackay D. The effects of non-nutritive artificial sweeteners, aspartame and sucralose, on the gut microbiome in healthy adults: secondary outcomes of a randomized double-blinded crossover clinical trial. Nutrients. 2020;12(11):3408. doi: 10.3390/nu12113408
  • Serrano J, Smith KR, Crouch AL, et al. High-dose saccharin supplementation does not induce gut microbiota changes or glucose intolerance in healthy humans and mice. Microbiome. 2021;9(1):11. doi: 10.1186/s40168-020-00976-w
  • Zhao M, Cai H, Jiang Z, et al. Glycerol-monolaurate-mediated attenuation of metabolic syndrome is associated with the modulation of gut microbiota in high-fat-diet-fed mice. Mol Nutr Food Res. 2019;63(18):e1801417. doi: 10.1002/mnfr.201801417
  • Zhang J, Yu H, Wang Q, et al. Dietary additive octyl and decyl glycerate modulates metabolism and inflammation under different dietary patterns with the contribution of the gut microbiota Food Funct. Food Funct. 2023;14(1):525–540. doi: 10.1039/D2FO03059D
  • Zhao M, Jiang Z, Cai H, et al. Modulation of the gut microbiota during high-dose glycerol monolaurate-mediated amelioration of obesity in mice fed a high-fat diet. MBio. 2020;11(2):e00190–20. doi: 10.1128/mBio.00190-20
  • He Z, Chen L, Catalan-Dibene J, et al. Food colorants metabolized by commensal bacteria promote colitis in mice with dysregulated expression of interleukin-23. Cell Metab. 2021;33(7):1358–1371.e5. doi: 10.1016/j.cmet.2021.04.015
  • Vasseur P, Dugelay E, Benamouzig R, et al. Dietary patterns, ultra-processed food, and the risk of inflammatory bowel diseases in the nutrinet-santé cohort. Inflamm Bowel Dis. 2021;27(1):65–73. doi: 10.1093/ibd/izaa018
  • Narula N, Wong ECL, Dehghan M, et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. BMJ. 2021;14(374):n1554. doi: 10.1136/bmj.n1554
  • Lo C-H, Khandpur N, Rossato SL, et al. Ultra-processed foods and risk of Crohn’s disease and ulcerative colitis: a prospective cohort study. Clin Gastroenterol Hepatol. 2022;20(6):e1323–37. doi: 10.1016/j.cgh.2021.08.031
  • De Silva PSA, Luben R, Shrestha SS, et al. Dietary arachidonic and oleic acid intake in ulcerative colitis etiology: a prospective cohort study using 7-day food diaries. Eur J Gastroenterol Hepatol. 2014;26(1):11–18. doi: 10.1097/MEG.0b013e328365c372
  • Ananthakrishnan AN, Khalili H, Konijeti GG, et al. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut. 2014;63(5):776–784. doi: 10.1136/gutjnl-2013-305304
  • Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol. 2011;106(4):563–573. doi: 10.1038/ajg.2011.44
  • Mozaffari H, Daneshzad E, Larijani B, et al. Dietary intake of fish, n-3 polyunsaturated fatty acids, and risk of inflammatory bowel disease: a systematic review and meta-analysis of observational studies. Eur J Nutr. 2020;59(1):1–17. doi: 10.1007/s00394-019-01901-0
  • Mayr L, Grabherr F, Schwärzler J, et al. Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease. Nat Commun. 2020;11(1):1775. doi: 10.1038/s41467-020-15646-6
  • Jowett SL, Seal CJ, Pearce MS, et al. Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study. Gut. 2004;53(10):1479–1484. doi: 10.1136/gut.2003.024828
  • Jantchou P, Morois S, Clavel-Chapelon F, et al. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am J Gastroenterol. 2010;105(10):2195–2201. doi: 10.1038/ajg.2010.192
  • Peters V, Bolte L, Schuttert E, et al. Western and carnivorous dietary patterns are associated with greater likelihood of IBD development in a large prospective population-based cohort. J Crohn’s Colitis. 2022;16(6):931–939. doi: 10.1093/ecco-jcc/jjab219
  • Dong C, Chan SSM, Jantchou P, et al. Meat intake is associated with a higher risk of ulcerative colitis in a large European prospective cohort study. J Crohns Colitis. 2022;16(8):1187–1196. doi: 10.1093/ecco-jcc/jjac054
  • Ananthakrishnan AN, Khalili H, Konijeti GG, et al. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology. 2013;145(5):970–977. doi: 10.1053/j.gastro.2013.07.050
  • Amre DK, D’Souza S, Morgan K, et al. Imbalances in dietary consumption of fatty acids, vegetables, and fruits are associated with risk for crohn’s disease in children. Am J Gastroenterol. 2007;102(9):2016–2025. doi: 10.1111/j.1572-0241.2007.01411.x
  • Yu X, Zuo T. Editorial: food additives, cooking and processing: impact on the microbiome. Front Nutr. 2021;8:731040. doi: 10.3389/fnut.2021.731040
  • Lewis JD, Abreu MT. Diet as a trigger or therapy for inflammatory bowel diseases. Gastroenterology. 2017;152(2):398–414.e6. doi: 10.1053/j.gastro.2016.10.019
  • Pfeffer-Gik T, Levine A. Dietary clues to the pathogenesis of Crohn’s disease. Dig Dis. 2014;32(4):389–394. doi: 10.1159/000358143
  • Martino JV, Van Limbergen J, Cahill LE. The role of carrageenan and carboxymethylcellulose in the development of intestinal inflammation. Front Pediatr. 2017;5:96. doi: 10.3389/fped.2017.00096
  • Watt J, Marcus R. Carrageenan-induced ulceration of the large intestine in the guinea pig. Gut. 1971;12(2):164–171. doi: 10.1136/gut.12.2.164
  • Noa M, Mas R. Effect of D-002 on the pre-ulcerative phase of carrageenan-induced colonic ulceration in the guinea-pig. J Pharm Pharmacol. 1998;50(5):549–553. doi: 10.1111/j.2042-7158.1998.tb06197.x
  • Anver MR, Cohen J. Animal model of human disease. Ulcerative colitis. Animal model: ulcerative colitis induced in guinea pigs with degraded carrageenan. Am J Pathol. 1976;84(2):431–434.
  • Raphael W, Sordillo LM. Dietary polyunsaturated fatty acids and inflammation: the role of phospholipid biosynthesis. Intern J Mol Sci. 2013;14(10):21167–21188. doi: 10.3390/ijms141021167
  • Reif S, Klein I, Lubin F, et al. Pre-illness dietary factors in inflammatory bowel disease. Gut. 1997;40(6):754–760. doi: 10.1136/gut.40.6.754
  • Durchschein F, Petritsch W, Hammer HF. Diet therapy for inflammatory bowel diseases: the established and the new. World J Gastroenterol. 2016;22(7):2179–2194. doi: 10.3748/wjg.v22.i7.2179
  • Sakamoto N, Kono S, Wakai K, et al. Dietary risk factors for inflammatory bowel disease. Inflamm Bowel Dis. 2005;11(2):154–163. doi: 10.1097/00054725-200502000-00009
  • Octoratou M, Merikas E, Malgarinos G, et al. A prospective study of pre-illness diet in newly diagnosed patients with Crohn’s disease. Rev Med Chir Soc Med Nat Iasi. 2012;116(1):40–49.
  • Parada Venegas D, La Fuente MK D, Landskron G, et al. Short chain fatty acids (SCFAs) mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277
  • Donohoe DR, Garge N, Zhang X, et al. Microbiome, the regulate, butyrate metabolism, energy. Cell Metab. 2011;13(5):517–526. doi: 10.1016/j.cmet.2011.02.018
  • Lin A, Micic D. Nutrition considerations in inflammatory bowel disease. Nutr Clin Prac. 2021;36:298–311. doi: 10.1002/ncp.10628
  • Russell LA, Balart MT, Serrano P, et al. The complexities of approaching nutrition in inflammatory bowel disease: current recommendations and future directions. Nutr Rev. 2022;80(2):215–229. doi: 10.1093/nutrit/nuab015
  • Ciocîrlan M, Ciocîrlan M, Iacob R, et al. Malnutrition prevalence in newly diagnosed patients with inflammatory bowel disease – Data from the national Romanian database. J Gastrointest Liver Dis. 2019;28(2):163–168. doi: 10.15403/jgld-176
  • Weisshof R, Chermesh I. Micronutrient deficiencies in inflammatory bowel disease. Curr Opin Clin Nutr Metabol Care. 201(18):576–581. 10.1097/MCO.0000000000000226
  • Kaitha S, Bashir M, Ali T. Iron deficiency anemia in inflammatory bowel disease. World J Gastrointest Pathophysiol. 2015;6(3):62–72. doi: 10.4291/wjgp.v6.i3.62
  • Nemeth E, Ganz T. Hepcidin-ferroportin interaction controls systemic iron homeostasis. Int J Mol Sci. 2021;22(12):6493. doi: 10.3390/ijms22126493
  • Dignass AU, Gasche C, Bettenworth D, et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J Crohn’s Colitis. 2015;9(3):211–222. doi: 10.1093/ecco-jcc/jju009
  • López-Muñoz P, Beltrán B, Sáez-González E, et al. Influence of vitamin D deficiency on inflammatory markers and clinical disease activity in IBD patients. Nutrients. 2019;11(5):1059. doi: 10.3390/nu11051059
  • Rufo PA, Denson LA, Sylvester FA, et al. Health supervision in the management of children and adolescents with IBD: nASPGHAN recommendations. J Pediatr Gastroenterol Nutr. 2012;55(1):93–108. doi: 10.1097/MPG.0b013e31825959b8
  • Urena-Torres P, Souberbielle JC. Pharmacologic role of vitamin D natural products. Curr Vasc Pharmacol. 2014;12(2):278–285. doi: 10.2174/15701611113119990020
  • Leslie WD, Miller N, Rogala L, et al. Vitamin D status and bone density in recently diagnosed inflammatory bowel disease: the Manitoba IBD cohort study. Am J Gastroenterol. 2008;103(6):1451–1459. doi: 10.1111/j.1572-0241.2007.01753.x
  • Cantorna MT. Vitamin D and its role in immunology: multiple sclerosis, and inflammatory bowel disease. Prog Biophys Mol Biol. 2006;92(1):60–64. doi: 10.1016/j.pbiomolbio.2006.02.020
  • Wöbke TK, Sorg BL, Steinhilber D. Vitamin D in inflammatory diseases. Front Physiol. 2014;5:1–20. doi: 10.3389/fphys.2014.00244
  • Froicu M, Weaver V, Wynn TA, et al. A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. Mol Endocrinol. 2003;17(12):2386–2392. doi: 10.1210/me.2003-0281
  • Raftery T, Martineau AR, Greiller CL, et al. Effects of vitamin D supplementation on intestinal permeability, cathelicidin and disease markers in Crohn’s disease: results from a randomised double-blind placebo-controlled study. United Eur Gastroenterol J. 2015;3(3):294–302. doi: 10.1177/2050640615572176
  • Stio M, Retico L, Annese V, et al. Vitamin D regulates the tight-junction protein expression in active ulcerative colitis. Scand J Gastroenterol. 2016;51(10):1193–1199. doi: 10.1080/00365521.2016.1185463
  • Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015;37(1):47–55. doi: 10.1007/s00281-014-0454-4
  • Mouli VP, Ananthakrishnan AN. Review article: vitamin D and inflammatory bowel diseases. Aliment Pharmacol Ther. 2014;39(2):125–136. doi: 10.1111/apt.12553
  • Turner D, Levine A, Walters TD, et al. Which PCDAI version best reflects intestinal inflammation in pediatric Crohn disease? J Pediatr Gastroenterol Nutr. 2017;64(2):254–260. doi: 10.1097/MPG.0000000000001227
  • Filippi J, Al-Jaouni R, Wiroth JB, et al. Nutritional deficiencies in patients with Crohn’s disease in remission. Inflamm Bowel Dis. 2006;12(3):185–191. doi: 10.1097/01.MIB.0000206541.15963.c3
  • Battat R, Kopylov U, Szilagyi A, et al. Vitamin B12 deficiency in inflammatory bowel disease: prevalence, risk factors, evaluation, and management. Inflamm Bowel Dis. 2014;20:1120–1128. doi: 10.1097/MIB.0000000000000024
  • Coull DB, Tait RC, Anderson JH, et al. Vitamin B12 deficiency following restorative proctocolectomy. Color Dis. 2007 Jul;9(6):562–566. doi: 10.1111/j.1463-1318.2007.01117.x
  • Bermejo F, Algaba A, Guerra I, et al. Should we monitor vitamin B12 and folate levels in Crohn’s disease patients? Scand J Gastroenterol. 2013;48(11):1272–1277. doi: 10.3109/00365521.2013.836752
  • Pan Y, Liu Y, Guo H, et al. Associations between folate and vitamin B12 levels and inflammatory bowel disease: a meta-analysis. Nutrients. 2017;9(4):382. doi: 10.3390/nu9040382
  • Erkelens MN, Mebius RE. Retinoic acid and immune homeostasis: a balancing act. Trends Immunol. 2017;38(3):168–180. doi: 10.1016/j.it.2016.12.006
  • Ghishan FK, Kiela PR. Vitamins and minerals in inflammatory bowel disease. Gastroenterol Clinic North America. 2017;36:797–808. doi: 10.1016/j.gtc.2017.08.011
  • Nowak JK, Grzybowska-Chlebowczyk U, Landowski P, et al. Prevalence and correlates of vitamin K deficiency in children with inflammatory bowel disease. Sci Rep. 2014;4(1):4768. doi: 10.1038/srep04768
  • Capozzi A, Scambia G, Lello S. Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health. Maturitas. 2020;140:55–63. doi: 10.1016/j.maturitas.2020.05.020
  • Skrajnowska D, Bobrowska-Korczak B. Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients. 2019;11(10):2273. doi: 10.3390/nu11102273
  • Vagianos K, Bector S, McConnell J, et al. Nutrition assessment of patients with inflammatory bowel disease. J Parenter Enter Nutr. 2007;31(4):311–319. doi: 10.1177/0148607107031004311
  • Siva S, Rubin DT, Gulotta G, et al. Zinc deficiency is associated with poor clinical outcomes in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(1):152–157. doi: 10.1097/MIB.0000000000000989

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.