166
Views
0
CrossRef citations to date
0
Altmetric
Review

The role of microRNAs in the different phases of liver regeneration

ORCID Icon, , &
Pages 959-973 | Received 01 May 2023, Accepted 03 Oct 2023, Published online: 18 Oct 2023

References

  • Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16(7):421–433. doi:10.1038/nrg3965
  • Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, et al. An overview of microRnas: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–5465. doi: 10.1002/jcp.27486
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297. doi:10.1016/S0092-8674(04)00045-5
  • Alles J, Fehlmann T, Fischer U, et al. An estimate of the total number of true human miRnas. Nucleic Acids Res. 2019;47(7):3353–3364. doi: 10.1093/nar/gkz097
  • Bartel DP. Metazoan MicroRNAs. Cell. 2018;173(1):20–51. doi:10.1016/j.cell.2018.03.006
  • Forbes SJ, Newsome PN. Liver regeneration - mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol. 2016;13(8):473–485. doi:10.1038/nrgastro.2016.97
  • Van Haele M, Snoeck J, Roskams T. Human liver regeneration: an etiology dependent process. Int J Mol Sci. 2019;20(9):2332. doi: 10.3390/ijms20092332
  • Li M, Zhou X, Mei J, et al. Study on the activity of the signaling pathways regulating hepatocytes from G0 phase into G1 phase during rat liver regeneration. Cell Mol Biol Lett. 2014;19(2):181–200. doi: 10.2478/s11658-014-0188-2
  • Yagi S, Hirata M, Miyachi Y, et al. Liver regeneration after Hepatectomy and partial liver transplantation. Int J Mol Sci. 2020;21(21):8414. doi: 10.3390/ijms21218414
  • Webber EM, Bruix J, Pierce RH, et al. Tumor necrosis factor primes hepatocytes for DNA replication in the rat. Hepatology. 1998;28(5):1226–1234. doi: 10.1002/hep.510280509
  • Cressman DE, Greenbaum LE, DeAngelis RA, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science. 1996;274(5291):1379–1383. doi: 10.1126/science.274.5291.1379
  • Taub R. Hepatoprotection via the IL-6/Stat3 pathway. J Clin Invest. 2003;112(7):978–980. doi:10.1172/JCI19974
  • Li R, Li D, Nie Y. IL-6/Gp130 signaling: a key unlocking regeneration. Cell Regen. 2023;12(1):16. doi:10.1186/s13619-023-00160-z
  • Ozaki M. Cellular and molecular mechanisms of liver regeneration: proliferation, growth, death and protection of hepatocytes. Semin Cell Dev Biol. 2020;100:62–73. doi:10.1016/j.semcdb.2019.10.007
  • Chaisson ML, Brooling JT, Ladiges W, et al. Hepatocyte-specific inhibition of NF-kappaB leads to apoptosis after TNF treatment, but not after partial hepatectomy. J Clin Invest. 2002;110(2):193–202. doi: 10.1172/JCI0215295
  • Kirillova I, Chaisson M, Fausto N. Tumor necrosis factor induces DNA replication in hepatic cells through nuclear factor kappaB activation. Cell Growth Differ. 1999;10(12):819–828.
  • Thorgersen EB, Barratt-Due A, Haugaa H, et al. The role of complement in liver injury, regeneration, and transplantation. Hepatology. 2019;70(2):725–736. doi: 10.1002/hep.30508
  • Xu Z, Jiang N, Xiao Y, et al. The role of gut microbiota in liver regeneration. Front Immunol. 2022;13:1003376. doi: 10.3389/fimmu.2022.1003376
  • Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 2021;18(1):40–55. doi:10.1038/s41575-020-0342-4
  • Tao Y, Wang M, Chen E, et al. Liver regeneration: analysis of the main relevant signaling molecules. Mediators Inflamm. 2017;2017:4256352. doi: 10.1155/2017/4256352
  • Michalopoulos GK. Liver regeneration. J Cell Physiol. 2007;213(2):286–300. doi:10.1002/jcp.21172
  • Kimura M, Moteki H, Ogihara M. Role of hepatocyte growth regulators in liver regeneration. Cells. 2023;12(2):208. doi: 10.3390/cells12020208
  • Albrecht JH. MET and epidermal growth factor signaling: the pillars of liver regeneration? Hepatology. 2016;64(5):1427–1429. doi:10.1002/hep.28822
  • Palmes D, Zibert A, Budny T, et al. Impact of rapamycin on liver regeneration. Virchows Arch. 2008;452(5):545–557. doi: 10.1007/s00428-008-0604-y
  • Rao S, Zaidi S, Banerjee J, et al. Transforming growth factor-β in liver cancer stem cells and regeneration. Hepatol Commun. 2017;1(6):477–493. doi: 10.1002/hep4.1062
  • Chari RS, Price DT, Sue SR, et al. Down-regulation of transforming growth factor beta receptor type I, II, and III during liver regeneration. Am J Surg. 1995;169(1):126–131. discussion 131-122. doi: 10.1016/S0002-9610(99)80120-2
  • Houck KA, Michalopoulos GK. Altered responses of regenerating hepatocytes to norepinephrine and transforming growth factor type beta. J Cell Physiol. 1989;141(3):503–509. doi:10.1002/jcp.1041410308
  • Di-Iacovo N, Pieroni S, Piobbico D, et al. Liver regeneration and immunity: a tale to tell. Int J Mol Sci. 2023;24(2):1176. doi: 10.3390/ijms24021176
  • Apte U, Gkretsi V, Bowen WC, et al. Enhanced liver regeneration following changes induced by hepatocyte-specific genetic ablation of integrin-linked kinase. Hepatology. 2009;50(3):844–851. doi: 10.1002/hep.23059
  • Huck I, Gunewardena S, Espanol-Suner R, et al. Hepatocyte nuclear factor 4 alpha activation is essential for termination of liver regeneration in mice. Hepatology. 2019;70(2):666–681. doi: 10.1002/hep.30405
  • Babiarz JE, Ruby JG, Wang Y, et al. Mouse ES cells express endogenous shRnas, siRnas, and other microprocessor-independent, dicer-dependent small RNAs. Genes Dev. 2008;22(20):2773–2785. doi: 10.1101/gad.1705308
  • Song G, Sharma AD, Roll GR, et al. MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology. 2010;51(5):1735–1743. doi: 10.1002/hep.23547
  • Shu J, Kren BT, Xia Z, et al. Genomewide microRNA down-regulation as a negative feedback mechanism in the early phases of liver regeneration. Hepatology. 2011;54(2):609–619. doi: 10.1002/hep.24421
  • Chen X, Zhao Y, Wang F, et al. MicroRNAs in liver regeneration. Cell Physiol Biochem. 2015;37(2):615–628. doi: 10.1159/000430381
  • Finch ML, Marquardt JU, Yeoh GC, et al. Regulation of microRnas and their role in liver development, regeneration and disease. Int J Biochem Cell Biol. 2014;54:288–303. doi: 10.1016/j.biocel.2014.04.002
  • Lauschke VM, Mkrtchian S, Ingelman-Sundberg M. The role of microRnas in liver injury at the crossroad between hepatic cell death and regeneration. Biochem Biophys Res Commun. 2017;482(3):399–407. doi:10.1016/j.bbrc.2016.10.084
  • Yi PS, Zhang M, Xu MQ. Role of microRNA in liver regeneration. Hepatobiliary Pancreat Dis Int. 2016;15(2):141–146. doi:10.1016/S1499-3872(15)60036-4
  • Rowe MM, Kaestner KH. The role of non-coding RNAs in liver disease, injury, and regeneration. Cells. 2023;12(3):359. doi: 10.3390/cells12030359
  • Lakner AM, Bonkovsky HL, Schrum LW. microRnas: fad or future of liver disease. World J Gastroenterol. 2011;17(20):2536–2542. doi:10.3748/wjg.v17.i20.2536
  • Lu S, Jiao H, Xu J, et al. Downregulation of IL6 targeted MiR-376b May contribute to a positive IL6 feedback loop during early liver regeneration in mice. Cell Physiol Biochem. 2015;37(1):233–242. doi: 10.1159/000430348
  • Chen XB, Zheng XB, Cai ZX, et al. MicroRNA-203 promotes liver regeneration after partial hepatectomy in cirrhotic rats. J Surg Res. 2017;211:53–63. doi: 10.1016/j.jss.2016.11.043
  • Lin X, Chen L, Li H, et al. miR-155 accelerates proliferation of mouse hepatocytes during liver regeneration by directly targeting SOCS1. Am J Physiol Gastrointest Liver Physiol. 2018;315(4):G443–g453. doi: 10.1152/ajpgi.00072.2018
  • Zhang C, Zhao Y, Wang Q, et al. Overexpression of miR-125a-5p inhibits hepatocyte proliferation through the STAT3 regulation in vivo and in vitro. Int J Mol Sci. 2022;23(15):8661. doi: 10.3390/ijms23158661
  • Zhou J, Ju WQ, Yuan XP, et al. miR-26a regulates mouse hepatocyte proliferation via directly targeting the 3’ untranslated region of CCND2 and CCNE2. Hepatobiliary Pancreat Dis Int. 2016;15(1):65–72. doi: 10.1016/S1499-3872(15)60383-6
  • Zhou J, Li Z, Huang Y, et al. MicroRNA-26a targets the mdm2/p53 loop directly in response to liver regeneration. Int J Mol Med. 2019;44(4):1505–1514. doi: 10.3892/ijmm.2019.4282
  • Zhou J, Ju W, Wang D, et al. Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration. PLoS One. 2012;7(4):e33577. doi: 10.1371/journal.pone.0033577
  • Yu ZY, Bai YN, Luo LX, et al. Expression of microRNA-150 targeting vascular endothelial growth factor-A is downregulated under hypoxia during liver regeneration. Mol Med Rep. 2013;8(1):287–293. doi: 10.3892/mmr.2013.1493
  • Zhang C, Ye B, Wei J, et al. MiR-199a-5p regulates rat liver regeneration and hepatocyte proliferation by targeting TNF-α TNFR1/TRADD/CASPASE8/CASPASE3 signalling pathway. Artif Cells Nanomed Biotechnol. 2019;47(1):4110–4118. doi: 10.1080/21691401.2019.1683566
  • Lei X, Dai X, Wang Q, et al. RNA-seq transcriptome profiling of liver regeneration in mice identifies the miR-34b-5p/phosphoinositide-dependent protein kinase 1 axis as a potential target for hepatocyte proliferation. Biochem Biophys Res Commun. 2022;627:111–121. doi: 10.1016/j.bbrc.2022.08.049
  • Marquez RT, Wendlandt E, Galle CS, et al. MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets pellino-1, and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol. 2010;298(4):G535–541. doi: 10.1152/ajpgi.00338.2009
  • Tu W, Gong J, Song J, et al. MiR-20a/TCF4 axis-mediated inhibition of hepatocytes proliferation impairs liver regeneration in mice PHx model by regulating CDC2 and CDC6. J Cell Mol Med. 2021;25(11):5220–5237. doi: 10.1111/jcmm.16530
  • Chang YM, Chen PC, Hsu CP, et al. Loss of hepatic miR-194 promotes liver regeneration and protects from acetaminophen-induced acute liver injury. Biochem Pharmacol. 2022;195:114862. doi: 10.1016/j.bcp.2021.114862
  • Gong J, Mou T, Wu H, et al. Brg1 regulates murine liver regeneration by targeting miR-187-5p dependent on Hippo signalling pathway. J Cell Mol Med. 2020;24(19):11592–11602. doi: 10.1111/jcmm.15776
  • Wang XP, Zhou J, Han M, et al. MicroRNA-34a regulates liver regeneration and the development of liver cancer in rats by targeting Notch signaling pathway. Oncotarget. 2017;8(8):13264–13276. doi: 10.18632/oncotarget.14807
  • Mai EH, Lei T, Li SQ, et al. MiR-34a affects hepatocyte proliferation during hepatocyte regeneration through regulating Notch/HIF-1α signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(8):3503–3511. doi: 10.26355/eurrev_201904_17716
  • Chen H, Sun Y, Dong R, et al. Mir-34a is upregulated during liver regeneration in rats and is associated with the suppression of hepatocyte proliferation. PLoS One. 2011;6(5):e20238. doi: 10.1371/journal.pone.0020238
  • Kim J, Hyun J, Wang S, et al. MicroRNA-378 is involved in hedgehog-driven epithelial-to-mesenchymal transition in hepatocytes of regenerating liver. Cell Death Dis. 2018;9(7):721. doi: 10.1038/s41419-018-0762-z
  • Yuan Q, Loya K, Rani B, et al. MicroRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration. Hepatology. 2013;57(1):299–310. doi: 10.1002/hep.25984
  • Geng X, Chang C, Zang X, et al. Integrative proteomic and microRNA analysis of the priming phase during rat liver regeneration. Gene. 2016;575(2 Pt 1):224–232. doi: 10.1016/j.gene.2015.08.066
  • Yuan B, Dong R, Shi D, et al. Down-regulation of miR-23b may contribute to activation of the TGF-β1/Smad3 signalling pathway during the termination stage of liver regeneration. FEBS Lett. 2011;585(6):927–934. doi: 10.1016/j.febslet.2011.02.031
  • Bardeck N, Paluschinski M, Castoldi M, et al. Swelling-induced upregulation of miR-141-3p inhibits hepatocyte proliferation. JHEP Rep. 2022;4(4):100440. doi: 10.1016/j.jhepr.2022.100440
  • Pan C, Chen H, Wang L, et al. Down-regulation of MiR-127 facilitates hepatocyte proliferation during rat liver regeneration. PLoS One. 2012;7(6):e39151. doi: 10.1371/journal.pone.0039151
  • Wei X, Yang Z, Liu H, et al. MicroRNA-125a-3p overexpression promotes liver regeneration through targeting proline-rich acidic protein 1. Ann Hepatol. 2020;19(1):99–106. doi: 10.1016/j.aohep.2019.05.010
  • Cirera-Salinas D, Pauta M, Allen RM, et al. Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle. 2012;11(5):922–933. doi: 10.4161/cc.11.5.19421
  • Schmidt-Arras D, Rose-John S. IL-6 pathway in the liver: from physiopathology to therapy. J Hepatol. 2016;64(6):1403–1415. doi:10.1016/j.jhep.2016.02.004
  • Li W, Liang X, Kellendonk C, et al. STAT3 contributes to the mitogenic response of hepatocytes during liver regeneration. J Biol Chem. 2002;277(32):28411–28417. doi: 10.1074/jbc.M202807200
  • Fazel Modares N, Polz R, Haghighi F, et al. IL-6 trans-signaling controls liver regeneration after partial hepatectomy. Hepatology. 2019;70(6):2075–2091. doi: 10.1002/hep.30774
  • Kang S, Tanaka T, Narazaki M, et al. Targeting interleukin-6 signaling in clinic. Immunity. 2019;50(4):1007–1023. doi: 10.1016/j.immuni.2019.03.026
  • Fujiyoshi M, Ozaki M. Molecular mechanisms of liver regeneration and protection for treatment of liver dysfunction and diseases. J Hepatobiliary Pancreat Sci. 2011;18(1):13–22. doi:10.1007/s00534-010-0304-2
  • Hu W, Nevzorova YA, Haas U, et al. Concurrent deletion of cyclin E1 and cyclin-dependent kinase 2 in hepatocytes inhibits DNA replication and liver regeneration in mice. Hepatology. 2014;59(2):651–660. doi: 10.1002/hep.26584
  • Liu YP, Qiu ZZ, Li XH, et al. Propofol induces ferroptosis and inhibits malignant phenotypes of gastric cancer cells by regulating miR-125b-5p/STAT3 axis. World J Gastrointest Oncol. 2021;13(12):2114–2128. doi: 10.4251/wjgo.v13.i12.2114
  • Deng P, Sun M, Zhao WY, et al. Circular RNA circVAPA promotes chemotherapy drug resistance in gastric cancer progression by regulating miR-125b-5p/STAT3 axis. World J Gastroenterol. 2021;27(6):487–500. doi: 10.3748/wjg.v27.i6.487
  • Zhang C, Wan X, Tang S, et al. miR-125b-5p/STAT3 pathway regulated by mTORC1 plays a critical role in promoting cell proliferation and tumor growth. J Cancer. 2020;11(4):919–931. doi: 10.7150/jca.33696
  • Xiu L, Xing Q, Mao J, et al. miRNA-125b-5p suppresses hypothyroidism development by targeting signal transducer and activator of transcription 3. Med Sci Monit. 2018;24:5041–5049. doi: 10.12659/MSM.907510
  • Tiegs G, Horst AK. TNF in the liver: targeting a central player in inflammation. Semin Immunopathol. 2022;44(4):445–459. doi:10.1007/s00281-022-00910-2
  • Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1(4):a000034. doi:10.1101/cshperspect.a000034
  • Dippold RP, Vadigepalli R, Gonye GE, et al. Chronic ethanol feeding alters miRNA expression dynamics during liver regeneration. Alcohol Clin Exp Res. 2013;37(Suppl 1):E59–69. doi: 10.1111/j.1530-0277.2012.01852.x
  • Zhao Y, Ye W, Wang YD, et al. HGF/c-Met: a key promoter in liver regeneration. Front Pharmacol. 2022;13:808855. doi: 10.3389/fphar.2022.808855
  • Talukdar S, Emdad L, Das SK, et al. EGFR: an essential receptor tyrosine kinase-regulator of cancer stem cells. Adv Cancer Res. 2020;147:161–188.
  • Reinehr R, Häussinger D. Epidermal growth factor receptor signaling in liver cell proliferation and apoptosis. Biol Chem. 2009;390(10):1033–1037. doi:10.1515/BC.2009.106
  • Cruise JL, Houck KA, Michalopoulos GK. Induction of DNA synthesis in cultured rat hepatocytes through stimulation of alpha 1 adrenoreceptor by norepinephrine. Science. 1985;227(4688):749–751. doi:10.1126/science.2982212
  • Komposch K, Sibilia M. EGFR signaling in liver diseases. Int J Mol Sci. 2015;17(1):30. doi: 10.3390/ijms17010030
  • Seshacharyulu P, Ponnusamy MP, Haridas D, et al. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16(1):15–31. doi: 10.1517/14728222.2011.648617
  • Starlinger P, Haegele S, Offensperger F, et al. The profile of platelet α-granule released molecules affects postoperative liver regeneration. Hepatology. 2016;63(5):1675–1688. doi: 10.1002/hep.28331
  • Alizai PH, Bertram L, Kroy D, et al. Expression of VEGFR-2 during liver regeneration after partial hepatectomy in a bioluminescence mouse model. Eur Surg Res. 2017;58(5–6):330–340. doi: 10.1159/000479628
  • Smith GA, Fearnley GW, Tomlinson DC, et al. The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis. Biosci Rep. 2015;35(5). doi: 10.1042/BSR20150171
  • Valizadeh A, Majidinia M, Samadi-Kafil H, et al. The roles of signaling pathways in liver repair and regeneration. J Cell Physiol. 2019;234(9):14966–14974. doi: 10.1002/jcp.28336
  • LeCouter J, Moritz DR, Li B, et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science. 2003;299(5608):890–893. doi: 10.1126/science.1079562
  • Mungunsukh O, Day RM. Transforming growth factor-β1 selectively inhibits hepatocyte growth factor expression via a micro-RNA-199-dependent posttranscriptional mechanism. Mol Biol Cell. 2013;24(13):2088–2097. doi:10.1091/mbc.e13-01-0017
  • Ghosh A, Dasgupta D, Ghosh A, et al. MiRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2. Cell Death Dis. 2017;8(3):e2706. doi: 10.1038/cddis.2017.123
  • Sun EJ, Wankell M, Palamuthusingam P, et al. Targeting the PI3K/Akt/mTOR Pathway in hepatocellular carcinoma. Biomedicines. 2021;9(11):1639. doi: 10.3390/biomedicines9111639
  • Fresno Vara JA, Casado E, de Castro J, et al. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30(2):193–204. doi: 10.1016/j.ctrv.2003.07.007
  • Noorolyai S, Shajari N, Baghbani E, et al. The relation between PI3K/AKT signalling pathway and cancer. Gene. 2019;698:120–128. doi: 10.1016/j.gene.2019.02.076
  • Xu M, Wang H, Wang J, et al. mTORC2 signaling is necessary for timely liver regeneration after partial hepatectomy. Am J Pathol. 2020;190(4):817–829. doi: 10.1016/j.ajpath.2019.12.010
  • Lund-Ricard Y, Cormier P, Morales J, et al. mTOR signaling at the Crossroad between metazoan regeneration and human diseases. Int J Mol Sci. 2020;21(8):2718. doi: 10.3390/ijms21082718
  • Zhang DX, Li CH, Zhang AQ, et al. Mtor-dependent suppression of remnant liver regeneration in liver failure after massive liver resection in rats. Dig Dis Sci. 2015;60(9):2718–2729. doi: 10.1007/s10620-015-3676-y
  • Ng R, Song G, Roll GR, et al. A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest. 2012;122(3):1097–1108. doi: 10.1172/JCI46039
  • Chen X, Song M, Chen W, et al. MicroRNA-21 contributes to liver regeneration by targeting PTEN. Med Sci Monit. 2016;22:83–91. doi: 10.12659/MSM.896157
  • Yang Y, Wang JK. The functional analysis of MicroRNAs involved in NF-κB signaling. Eur Rev Med Pharmacol Sci. 2016;20(9):1764–1774.
  • Wen X, Jiao L, Tan H. MAPK/ERK pathway as a central regulator in vertebrate organ regeneration. Int J Mol Sci. 2022;23(3):1464. doi: 10.3390/ijms23031464
  • Russell JO, Monga SP. Wnt/β-catenin signaling in liver development, homeostasis, and pathobiology. Annu Rev Pathol. 2018;13(1):351–378. doi: 10.1146/annurev-pathol-020117-044010
  • Zhang J, Han C, Wu T. MicroRNA-26a promotes cholangiocarcinoma growth by activating β-catenin. Gastroenterology. 2012;143(1):246–256.e248. doi:10.1053/j.gastro.2012.03.045
  • Yan M, Li G, An J. Discovery of small molecule inhibitors of the Wnt/β-catenin signaling pathway by targeting β-catenin/Tcf4 interactions. Exp Biol Med (Maywood). 2017;242(11):1185–1197. doi:10.1177/1535370217708198
  • Wang S, Zhou L, Ling L, et al. The crosstalk between Hippo-YAP pathway and innate immunity. Front Immunol. 2020;11:323. doi: 10.3389/fimmu.2020.00323
  • Chen W, Liu Y, Chen J, et al. The Notch signaling pathway regulates macrophage polarization in liver diseases. Int Immunopharmacol. 2021;99:107938. doi: 10.1016/j.intimp.2021.107938
  • Gao L, Zhang Z, Zhang P, et al. Role of canonical Hedgehog signaling pathway in liver. Int J Biol Sci. 2018;14(12):1636–1644. doi: 10.7150/ijbs.28089
  • Jeng KS, Chang CF, Lin SS. Sonic Hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int J Mol Sci. 2020;21(3):758. doi: 10.3390/ijms21030758
  • Li M, Zhai G, Gu X, et al. ATF3 and PRAP1 play important roles in cisplatin-induced damages in microvascular endothelial cells. Gene. 2018;672:93–105. doi: 10.1016/j.gene.2018.06.017
  • Huang BH, Zhuo JL, Leung CH, et al. PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage. Cell Death Dis. 2012;3(12):e442. doi: 10.1038/cddis.2012.180
  • Xiao T, Meng W, Jin Z, et al. MiR-182-5p promotes hepatocyte-stellate cell crosstalk to facilitate liver regeneration. Commun Biol. 2022;5(1):771. doi: 10.1038/s42003-022-03714-0
  • Yang I, Son Y, Shin JH, et al. Ahnak depletion accelerates liver regeneration by modulating the TGF-β/Smad signaling pathway. BMB Rep. 2022;55(8):401–406. doi: 10.5483/BMBRep.2022.55.8.071
  • Song W, Wu S, Wu Q, et al. The microRNA-141-3p/CDK8 pathway regulates the chemosensitivity of breast cancer cells to trastuzumab. J Cell Biochem. 2019;120(8):14095–14106. doi: 10.1002/jcb.28685
  • Elchaninov A, Nikitina M, Vishnyakova P, et al. Macro- and microtranscriptomic evidence of the monocyte recruitment to regenerating liver after partial hepatectomy in mouse model. Biomed Pharmacother. 2021;138:111516. doi: 10.1016/j.biopha.2021.111516
  • Michalopoulos GK. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am J Pathol. 2010;176(1):2–13. doi:10.2353/ajpath.2010.090675
  • Bangru S, Kalsotra A. Cellular and molecular basis of liver regeneration. Semin Cell Dev Biol. 2020;100:74–87. doi:10.1016/j.semcdb.2019.12.004
  • Zingale VD, Gugliandolo A, Mazzon E. MiR-155: an important regulator of neuroinflammation. Int J Mol Sci. 2021;23(1):90. doi: 10.3390/ijms23010090
  • Hu J, Huang S, Liu X, et al. miR-155: an important role in inflammation response. J Immunol Res. 2022;2022:7437281. doi: 10.1155/2022/7437281
  • Mashima R. Physiological roles of miR-155. Immunology. 2015;145(3):323–333. doi:10.1111/imm.12468
  • Pashangzadeh S, Motallebnezhad M, Vafashoar F, et al. Implications the role of miR-155 in the pathogenesis of autoimmune diseases. Front Immunol. 2021;12:669382. doi: 10.3389/fimmu.2021.669382
  • Mahesh G, Biswas R. MicroRNA-155: a master regulator of inflammation. J Interferon Cytokine Res. 2019;39(6):321–330. doi:10.1089/jir.2018.0155
  • Mao SA, Glorioso JM, Nyberg SL. Liver regeneration. Transl Res. 2014;163(4):352–362. doi:10.1016/j.trsl.2014.01.005
  • Wang L, Yao J, Shi X, et al. MicroRNA-302b suppresses cell proliferation by targeting EGFR in human hepatocellular carcinoma SMMC-7721 cells. BMC Cancer. 2013;13(1):448. doi: 10.1186/1471-2407-13-448
  • Zhao Y, Ye L, Yu Y. MicroRNA-126-5p suppresses cell proliferation, invasion and migration by targeting EGFR in liver cancer. Clin Res Hepatol Gastroenterol. 2020;44(6):865–873. doi:10.1016/j.clinre.2020.03.025
  • Yan X, Yang P, Liu H, et al. MiR-4461 inhibits the progression of gallbladder carcinoma via regulating EGFR/AKT signaling. Cell Cycle. 2022;21(11):1166–1177. doi: 10.1080/15384101.2022.2042775
  • Qian J, Yu J, Zhu X, et al. MiR-335 promotes corneal neovascularization by targeting EGFR. BMC Ophthalmol. 2022;22(1):267. doi: 10.1186/s12886-022-02481-0
  • Liu C, Li J, Wang W, et al. MiR-206 inhibits liver cancer stem cell expansion by regulating EGFR expression. Cell Cycle. 2020;19(10):1077–1088. doi: 10.1080/15384101.2020.1739808
  • Du M, Wang J, Chen H, et al. MicroRNA‑200a suppresses migration and invasion and enhances the radiosensitivity of NSCLC cells by inhibiting the HGF/c‑Met signaling pathway. Oncol Rep. 2019;41(3):1497–1508. doi: 10.3892/or.2018.6925
  • Li T, Zhao H, Zhou H, et al. LncRNA LINC00857 strengthens the malignancy behaviors of pancreatic adenocarcinoma cells by serving as a competing endogenous RNA for miR-340-5p to upregulate TGFA expression. PLoS One. 2021;16(3):e0247817. doi: 10.1371/journal.pone.0247817
  • Tao LJ, Pan XY, Wang JW, et al. Circular RNA circANKS1B acts as a sponge for miR-152-3p and promotes prostate cancer progression by upregulating TGF-α expression. Prostate. 2021;81(5):271–278. doi: 10.1002/pros.24102
  • Lindow M, Kauppinen S. Discovering the first microRNA-targeted drug. J Cell Bio. 2012;199(3):407–412. doi:10.1083/jcb.201208082
  • Bonneau E, Neveu B, Kostantin E, et al. How close are miRnas from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC. 2019;30(2):114–127. doi: 10.1353/jod.2019.0009
  • Deng Y, Campbell F, Han K, et al. Randomized clinical trials towards a single-visit cure for chronic hepatitis C: oral GSK2878175 and injectable RG-101 in chronic hepatitis C patients and long-acting injectable GSK2878175 in healthy participants. J Viral Hepat. 2020;27(7):699–708. doi: 10.1111/jvh.13282
  • Huang PS, Liao CJ, Huang YH, et al. Functional and clinical significance of dysregulated microRnas in liver cancer. Cancers (Basel). 2021;13(21):5361. doi: 10.3390/cancers13215361
  • Ali Syeda Z, Langden SSS, Munkhzul C, et al. Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci. 2020;21(5):1723. doi: 10.3390/ijms21051723
  • Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol. 2009;4(1):199–227. doi: 10.1146/annurev.pathol.4.110807.092222
  • He L, Tian DA, Li PY, et al. Mouse models of liver cancer: progress and recommendations. Oncotarget. 2015;6(27):23306–23322. doi: 10.18632/oncotarget.4202
  • Greene CM, Varley RB, Lawless MW. MicroRNAs and liver cancer associated with iron overload: therapeutic targets unravelled. World J Gastroenterol. 2013;19(32):5212–5226. doi:10.3748/wjg.v19.i32.5212
  • Banaudha KK, Verma M. The role of microRnas in the management of liver cancer. Methods Mol Biol. 2012;863:241–251.
  • Drakaki A, Hatziapostolou M, Iliopoulos D. Therapeutically targeting microRnas in liver cancer. Curr Pharm Des. 2013;19(7):1180–1191. doi:10.2174/138161213804805658
  • Callegari E, Gramantieri L, Domenicali M, et al. MicroRNAs in liver cancer: a model for investigating pathogenesis and novel therapeutic approaches. Cell Death Differ. 2015;22(1):46–57. doi: 10.1038/cdd.2014.136
  • Starlinger P, Hackl H, Pereyra D, et al. Predicting postoperative liver dysfunction based on blood-derived MicroRNA signatures. Hepatology. 2019;69(6):2636–2651. doi: 10.1002/hep.30572
  • Momin MY, Gaddam RR, Kravitz M, et al. The challenges and opportunities in the development of MicroRNA therapeutics: a multidisciplinary viewpoint. Cells. 2021;10(11):3097. doi: 10.3390/cells10113097
  • Zhang S, Cheng Z, Wang Y, et al. The risks of miRNA therapeutics: in a drug target perspective. Drug Des Devel Ther. 2021;15:721–733. doi: 10.2147/DDDT.S288859

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.