1,488
Views
0
CrossRef citations to date
0
Altmetric
Articles

Land-use conversions from managed grasslands to croplands in Uruguay increase medium-term net carbon emissions to the atmosphere

ORCID Icon, ORCID Icon & ORCID Icon
Pages 240-259 | Received 24 Jul 2020, Accepted 17 May 2021, Published online: 16 Jun 2021

References

  • Abraha, M., Hamilton, S.K., Chen, J., & Robertson, G.P. (2018). Ecosystem carbon exchange on conversion of Conservation Reserve Program grasslands to annual and perennial cropping systems. Agricultural and Forest Meteorology, 253–254(October 2017), 151–160. https://doi.org/10.1016/j.agrformet.2018.02.016
  • Adejuwon, J. (2005). Assessing the suitability of the EPIC crop model for use in the study of impacts of climate variability and climate change in West Africa. Singapore Journal of Tropical Geography, 26(1), 44–60. https://doi.org/10.1111/j.0129-7619.2005.00203.x
  • Altesor, A., Piñeiro, G., Lezama, F., Jackson, R.B., Sarasola, M., & Paruelo, J.M. (2006). Ecosystem changes associated with grazing in subhumid South American grasslands. Journal of Vegetation Science, 17(3), 323–332. Blackwell Publishing Ltd. https://doi.org/10.1111/j.1654-1103.2006.tb02452.x
  • Alvarez, R., Russo, M.E., Prystupa, P., Scheiner, J.D., & Blotta, L. (1998). Soil Carbon Pools under Conventional and No-Tillage Systems in the Argentine Rolling Pampa. Agronomy Journal, 90(2), 138. https://doi.org/10.2134/agronj1998.00021962009000020003x
  • Apezteguía, H., Izaurralde, R.C., & Sereno, R. (2009). Simulation study of soil organic matter dynamics as affected by land use and agricultural practices in semiarid Córdoba, Argentina. Soil and Tillage Research, 102(1), 101–108. https://doi.org/10.1016/j.still.2008.07.016
  • AUSID. (2009). Annual conference and field day 2009 - La Manera. https://ausid.com.uy/jornada2009.html
  • AUSID. (2010). Annual conference and field day 2010 - Las Brisas. AUSID. https://ausid.com.uy/jornada2010a.html
  • Ayala, W., & Bermudez, R. (2005). Estrategias de manejo en campos naturales sobre suelos de lomadas en la región Este. Seminario De Actualización Técnica En Manejo De Campo Natural, (pp. 41–50). INIA Uruguay..
  • Baethgen, W.E. (2003). Utilización del modelo Century para estudiar la dinámica de carbono y nitrógeno [Using the Century model to study the dynamics of carbon and nitrogen]. In R. Gomez & M. Albicette (Eds.). 40 años de rotaciones agrícolas-ganaderas (40 years of agricultural-livestock rotations) (pp. 9–18). National Agricultural Research Institute.
  • Baeza, S., & Paruelo, J.M. (2020). Land Use/Land Cover Change (2000–2014) in the Rio de la Plata Grasslands: An analysis based on MODIS NDVI time series. Remote Sensing, 12(3), 381. https://doi.org/10.3390/rs12030381
  • Balkovič, J., van der Velde, M., Schmid, E., Skalský, R., Khabarov, N., Obersteiner, M., Stürmer, B., & Xiong, W. (2013). Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation. Agricultural Systems, 120, 61–75. https://doi.org/10.1016/j.agsy.2013.05.008
  • Bermudez, R., & Ayala, W. (2005). Producción de forraje de un campo natural de la zona de Lomadas del Este [Forage production of a natural grassland field of the hilly Eastern]. Seminario De Actualización Técnica En Manejo De Campo Natural, 33–39. INIA Uruguay.
  • Bernardos, J.N., Viglizzo, E.F., Jouvet, V., Lértora, F.A., Pordomingo, A.J., & Cid, F.D. (2001). The use of EPIC model to study the agroecological change during 93 years of farming transformation in the Argentine pampas. Agricultural Systems, 69(3), 215–234. https://doi.org/10.1016/S0308-521X(01)00027-0
  • Berretta, E.J. (2003). Uruguay in Country Pasture Profiles. Food and Agriculture Organization (FAO). http://www.fao.org/ag/AGP/AGPC/doc/Counprof/uruguay/uruguay.htm
  • Billen, N., Röder, C., Gaiser, T., & Stahr, K. (2009). Carbon sequestration in soils of SW-Germany as affected by agricultural management—Calibration of the EPIC model for regional simulations. Ecological Modelling, 220(1), 71–80. https://doi.org/10.1016/j.ecolmodel.2008.08.015
  • Capurro Etchegaray, M. (1977). CONEAT, reseña de la metodología adoptada para determinar la productividad a nivel predial [National Commission for the Agronomic Study of Soils (CONEAT), a review of the methodology adopted to determine productivity at the farm level]. Fundación de la Cultura Universitaria.
  • Caride, C., Piñeiro, G., & Paruelo, J.M. (2012). How does agricultural management modify ecosystem services in the argentine Pampas? The effects on soil C dynamics. Agriculture, Ecosystems & Environment, 154, 23–33. https://doi.org/10.1016/j.agee.2011.05.031
  • Castaño-Sánchez, J.P., Gimenez, A., Ceroni, M., Furest, J., Aunchayna, R., & Bidegain, M. (2011). Caracterización Agroclimática del Uruguay (1980–1989) [Agroclimatic characterization of Uruguay (1980–2009)] (Issue 193). INIA Uruguay.
  • Castro, M., Coutiño, M.J., & Perez, O. (2015). Evaluación de cultivares de cultivos de verano e invierno INIA La Estanzuela y Young (2000–2014) [Winter and Summer Field Crop Variety Trials]. INIA Uruguay. http://www.inia.org.uy/convenio_inase_inia/resultados/index_00.htm
  • Causarano, H.J., Doraiswamy, P.C., McCarty, G.W., Hatfield, J.L., Milak, S., & Stern, A.J. (2008). EPIC modeling of soil organic carbon sequestration in croplands of Iowa. Journal of Environmental Quality, 37(4), 1345–1353. https://doi.org/10.2134/jeq2007.0277
  • Causarano, H.J., Doraiswamy, P.C., Muratova, N., Pachikin, K., McCarty, G.W., Akhmedov, B., & Williams, J.R. (2011). Improved modeling of soil organic carbon in a semiarid region of Central East Kazakhstan using EPIC. Agronomy for Sustainable Development, 31(2), 275–286. https://doi.org/10.1051/agro/2010028
  • Causarano, H.J., Shaw, J.N., Franzluebbers, A.J., Reeves, D.W., Raper, R.L., Balkcom, K.S., Norfleet, M.L., & Izaurralde, R.C. (2007). Simulating field-scale soil organic carbon dynamics using EPIC. Soil Science Society of America Journal, 71(4), 1174–1185. https://doi.org/10.2136/sssaj2006.0356
  • Chapin, F.S., Woodwell, G.M., Randerson, J.T., Rastetter, E.B., Lovett, G.M., Baldocchi, D.D., Clark, D.A., Harmon, M.E., Schimel, D.S., Valentini, R., Wirth, C., Aber, J.D., Cole, J.J., Goulden, M.L., Harden, J.W., Heimann, M., Howarth, R.W., Matson, P.A., McGuire, A.D., & Schulze, E.-D. (2006). Reconciling Carbon-cycle Concepts, Terminology, and Methods. Ecosystems, 9(7), 1041–1050. https://doi.org/10.1007/s10021-005-0105-7
  • Coupland, R.T. (1992). Overview of South American Grasslands. In R.T. Coupland (Ed.), Ecosystems of the world (Issue 18, pp. 363–366). Elsevier.
  • Culman, S.W., DuPont, S.T., Glover, J.D., Buckley, D.H., Fick, G.W., Ferris, H., & Crews, T.E. (2010). Long-term impacts of high-input annual cropping and unfertilized perennial grass production on soil properties and belowground food webs in Kansas, USA. Agriculture, Ecosystems & Environment, 137(1–2), 13–24. https://doi.org/10.1016/j.agee.2009.11.008
  • Díaz Rossello, R. (1992). Evolución de la materia orgánica en rotaciones de cultivos con pasturas. Revista INIA De Investigaciones Agronómicas, 1(1), 103–110.
  • DuPont, S.T., Culman, S.W., Ferris, H., Buckley, D.H., & Glover, J.D. (2010). No-tillage conversion of harvested perennial grassland to annual cropland reduces root biomass, decreases active carbon stocks, and impacts soil biota. Agriculture, Ecosystems & Environment, 137(1–2), 25–32. https://doi.org/10.1016/j.agee.2009.12.021
  • Ernst, O., Bentancur, O., & Borges, R. (2002). Decomposition of Crop Residues Under No-Till Management : Wheat, Corn, Soybeans and Wheat. Agrociencia, 6, 20–26.
  • EUROSTAT. (2013). Eurostat Statistics Explained. Glossary: Livestock Unit (LSU]. https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Livestock_unit_(LSU)
  • Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science, 319(5867), 1235–1238. https://doi.org/10.1126/science.1152747
  • Farina, R., Seddaiu, G., Orsini, R., Steglich, E., Roggero, P.P., & Francaviglia, R. (2011). Soil carbon dynamics and crop productivity as influenced by climate change in a rainfed cereal system under contrasting tillage using EPIC. Soil and Tillage Research, 112(1), 36–46. https://doi.org/10.1016/j.still.2010.11.002
  • Formoso, D. (2005). La investigación en utilización de pasturas naturales sobre cristalino desarrollada por el SUL [Reseach in natural pastures over granite soils made by SUL]. In Seminario de actualización Técnica en manejo de campo natural (pp. 51–59). INIA Uruguay.
  • Freier, K.P., Schneider, U.A., & Finckh, M. (2011). Dynamic interactions between vegetation and land use in semi-arid Morocco: Using a Markov process for modeling rangelands under climate change. Agriculture, Ecosystems & Environment, 140(3–4), 462–472. https://doi.org/10.1016/j.agee.2011.01.011
  • Gaiser, T., de Barros, I., Sereke, F., & Lange, F.-M. (2010). Validation and reliability of the EPIC model to simulate maize production in small-holder farming systems in tropical sub-humid West Africa and semi-arid Brazil. Agriculture, Ecosystems & Environment, 135(4), 318–327. https://doi.org/10.1016/j.agee.2009.10.014
  • Gassman, P.W., Williams, J.R., Benson, V., Izaurralde, R.C., Hauck, L.M., Jones, C.A., Atwood, J.D., Kiniry, J.R., & Flowers, J.D. (2005). Historical development and applications of the EPIC and APEX models. In Director. Center for Agricultural and Rural Development, Iowa State University. https://doi.org/10.13031/2013.17074.
  • Gelfand, I., Zenone, T., Jasrotia, P., Chen, J., Hamilton, S.K., & Robertson, G.P. (2011). Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Proceedings of the National Academy of Sciences of the United States of America, 108(33), 13864–13869. https://doi.org/10.1073/pnas.1017277108
  • Guerschman, J.P., Paruelo, J.M., Di Bella, C.M., Giallorenzi, M.C., & Pacin, F. (2003). Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data. International Journal of Remote Sensing, 24(17), 3381–3402. https://doi.org/10.1080/0143116021000021288
  • Houghton, R.A. (2018). Interactions Between Land-Use Change and Climate-Carbon Cycle Feedbacks. In Current Climate Change Reports (Vol. 4(2), 115–127). Springer. https://doi.org/10.1007/s40641-018-0099-9.
  • Houghton, R.A., & Nassikas, A.A. (2017). Global and regional fluxes of carbon from land use and land cover change 1850–2015. Global Biogeochemical Cycles, 31(3), 456–472. https://doi.org/10.1002/2016GB005546
  • INIA Uruguay - GRAS Unit. (2016). INIA - Mapas de precipitación acumulada [INIA accumulated precipitation maps]. http://www.inia.uy/investigación-e-innovación/unidades/GRAS/Clima/Precipitación-nacional/Mapas-de-precipitación-acumulada
  • IPCC. (2003). Good Practice Guidance for Land Use, Land-Use Change and Forestry - Methodology Report.
  • Izaurralde, R.C., McGill, W.B., & Williams, J.R. (2012). Development and application of the EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies. In M. A. Liebig, A. J. Franzluebbers, & R. F. Follet (Eds.), Managing agricultural greenhouse gases: Coordinated agricultural research through GRACEnet to address our changing climate (Issue 17, pp. 293–308). Academic Press. http://site.ebrary.com/lib/umd/docDetail.action?docID=10566556
  • Izaurralde, R.C., Williams, J.R., McGill, W.B., Rosenberg, N.J., & Jakas, M.C.Q. (2006). Simulating soil C dynamics with EPIC: Model description and testing against long-term data. In Ecological Modelling (Vol. 192, Issues 3–4, pp. 362–384). https://doi.org/10.1016/j.ecolmodel.2005.07.010.
  • Izaurralde, R.C., Williams, J.R., Post, W.M., Thomson, A.M., McGill, W.B., Owens, L.B., & Lal, R. (2007). Long-term modeling of soil C erosion and sequestration at the small watershed scale. In Climatic Change (Vol. 80, Issues 1–2, pp. 73–90). Springer Netherlands. https://doi.org/10.1007/s10584-006-9167-6.
  • Lal, R. (2002). Soil carbon dynamics in cropland and rangeland. Environmental Pollution, 116(3), 353–362. https://doi.org/10.1016/S0269-7491(01)00211-1
  • Lanfranco Crespo, B., & Sapriza Fraga, G. (2011). El índice CONEAT como medida de productividad y valor de la tierra [The CONEAT index as a measure of land productivity and value]. (INIA Uruguay (ed.); Serie Técn). INIA Uruguay.
  • López-Mársico, L., Altesor, A., Oyarzabal, M., Baldassini, P., & Paruelo, J.M. (2015). Grazing increases below-ground biomass and net primary production in a temperate grassland. Plant and Soil, 392(1–2), 155–162. https://doi.org/10.1007/s11104-015-2452-2
  • Ma, K., Liu, J., Balkovič, J., Skalský, R., Azevedo, L.B., & Kraxner, F. (2016). Changes in soil organic carbon stocks of wetlands on China’s Zoige plateau from 1980 to 2010. Ecological Modelling, 327, 18–28. https://doi.org/10.1016/j.ecolmodel.2016.01.009
  • Mazzilli, S., Piñeiro, G., & Kemanian, A. (2012). Priming effects on soil organic carbon decomposition induced by high C:N crop inputs. Agrociencia Uruguay, 16(3), 191–198. https://doi.org/10.31285/AGRO.16.669
  • Mazzilli, S.R., Kemanian, A.R., Ernst, O.R., Jackson, R.B., & Piñeiro, G. (2015). Greater humification of belowground than aboveground biomass carbon into particulate soil organic matter in no-till corn and soybean crops. Soil Biology and Biochemistry, 85(September 2016), 22–30. https://doi.org/10.1016/j.soilbio.2015.02.014
  • MGAP Uruguay, MVOTMA Uruguay, & FAO. (2011). Mapa de Cobertura del Suelo de Uruguay - Land Cover Classification System. FAO Uruguay.
  • MGAP-DGRNR-CONEAT. (1994). Indice de Productividad grupos de suelos CONEAT (Productivity Index of CONEAT Soil map).
  • MGAP-DIEA. (2015). Anuario estadístico Agropecuario 2015 [Agricultural Statistical Yearbook 2015]. MGAP.
  • MGAP-DIEA. (2016a). Anuario estadístico Agropecuario 2016 [Agricultural Statistical Yearbook 2016]. MGAP.
  • MGAP-DIEA. (2016b). Series Historicas de Estadísticas Agropecuarias [Historical Series of Agricultural Statistics]. MGAP Uruguayhttp://www.mgap.gub.uy/portal/page.aspx?2,diea,diea-series-historicas,O,es,0
  • MGAP-RENARE-DSA. (2003). Zonificación de cultivos de verano de secano [Zoning rainfed summer crops]. MGAP Uruguay.
  • Natural Grassland Working Group. (2017). Producción animal sostenible en pastoreo sobre campo natural [Sustainable livestock production grazing natural grasslands]. MGAP. http://www.mgap.gub.uy/sites/default/files/multimedia/libro_campo_natural_final_en_baja.pdf
  • Parton, W.J., Stewart, J.W.B., & Cole, C.V. (1988). Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry, 5(1), 109–131. https://doi.org/10.1007/BF02180320
  • Picasso, V.D., Modernel, P.D., Becoña, G., Salvo, L., Gutiérrez, L., & Astigarraga, L. (2014). Sustainability of meat production beyond carbon footprint: A synthesis of case studies from grazing systems in Uruguay. Meat Science, 98(3), 346–354. https://doi.org/10.1016/j.meatsci.2014.07.005
  • Piñeiro, G., Paruelo, J.M., & Oesterheld, M. (2006). Potential long-term impacts of livestock introduction on carbon and nitrogen cycling in grasslands of Southern South America. Global Change Biology, 12(7), 1267–1284. https://doi.org/10.1111/j.1365-2486.2006.01173.x
  • Pravia, M.V., Kemanian, A.R., Terra, J.A., Shi, Y., Macedo, I., & Goslee, S. (2019). Soil carbon saturation, productivity, and carbon and nitrogen cycling in crop-pasture rotations. Agricultural Systems, 171, 13–22. https://doi.org/10.1016/j.agsy.2018.11.001
  • R Development Core Team. (2013). R Software. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  • Rahman, M.R., Shi, Z.H., & Chongfa, C. (2009). Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecological Modelling, 220(13–14), 1724–1734. https://doi.org/10.1016/j.ecolmodel.2009.04.004
  • Rolinski, S., Müller, C., Heinke, J., Weindl, I., Biewald, A., Leon Bodirsky, B., Bondeau, A., Boons-Prins, E.R., Bouwman, A.F., Leffelaar, P.A., Roller, J.A.T., Schaphoff, S., & Thonicke, K. (2018). Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6. Geoscientific Model Development, 11(1), 429–451. https://doi.org/10.5194/gmd-11-429-2018
  • Roloff, G., De Jong, R., Zentner, R.P., Campbell, C.A., & Benson, V.W. (1998). Estimating spring wheat yield variability with EPIC. Canadian Journal of Soil Science, 78(3), 541–549. https://doi.org/10.4141/S97-063
  • Sala, O.E., Lauenroth, W.K., & Burke, I.C. (1996). Carbon Budgets of Temperate Grasslands and the Effects of Global Change. In A.I. Breymeyer, D.O. Hall, J.M. Melillo, & G.I. Agren (Eds.), Global Change: Effects on Coniferous Forests and Grasslands (56thed., xxiv + 459 pp.). John Wiley. http://www.scopenvironment.org/downloadpubs/scope56/Chapter05.html%5Cnhttp://www.scopenvironment.org/downloadpubs/scope56/contents.html
  • Schwalm, C.R., Williams, C.A., Schaefer, K., Anderson, R., Arain, M.A., Baker, I., Barr, A., Black, T.A., Chen, G., Chen, J.M., Ciais, P., Davis, K.J., Desai, A., Dietze, M., Dragoni, D., Fischer, M.L., Flanagan, L.B., Grant, R., Gu, L., & Verma, S.B. (2010). A model-data intercomparison of CO 2 exchange across North America: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 115(4), G00H05. https://doi.org/10.1029/2009JG001229
  • Sharda, V., Mekonnen, M.M., Ray, C., & Gowda, P.H. (2020). Use of Multiple Environment Variety Trials Data to Simulate Maize Yields in the Ogallala Aquifer Region: A Two Model Approach. Journal of the American Water Resources Association, 57(2), 1–15. https://doi.org/10.1111/1752-1688.12873
  • Smith, P., Davies, C.A., Ogle, S., Zanchi, G., Bellarby, J., Bird, N., Boddey, R.M., McNamara, N.P., Powlson, D., Cowie, A., Noordwijk, M., Davis, S.C., Richter, D.D.B., Kryzanowski, L., Wijk, M.T., Stuart, J., Kirton, A., Eggar, D., Newton-Cross, G., & Braimoh, A.K. (2012). Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: Current capability and future vision. Global Change Biology, 18(7), 2089–2101. https://doi.org/10.1111/j.1365-2486.2012.02689.x
  • Sohl, T.L., Sleeter, B.M., Zhu, Z., Sayler, K.L., Bennett, S., Bouchard, M., Reker, R., Hawbaker, T., Wein, A., Liu, S., Kanengieter, R., & Acevedo, W. (2012). A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes. Applied Geography34, 111–124). https://doi.org/10.1016/j.apgeog.2011.10.019.
  • Soriano, A., León, R.J.C., Sala, O.E., Lavado, R.S., Deregibus, V.A., Cahuépé, M.A., Scaglia, O.A., Velázquez, C.A., & Lemcoff, J.H. (1992). Río de la Plata Grasslands. In R.T. Coupland (Ed.), Ecosystems of the world (Issue 19, pp. 367–407). Elsevier. http://cat.inist.fr/?aModele=afficheN&cpsidt=5613792
  • Soriano, A., & Paruelo, J.M. (1992). Biozones: Vegetation Units Defined by Functional Characters Identifiable with the Aid of Satellite Sensor Images. Global Ecology and Biogeography Letters, 2(3), 82. https://doi.org/10.2307/2997510
  • Terra, J.A., García Préchac, F., Salvo, L., & Hernández, J. (2006). Soil use intensity impacts on total and particulate soil organic Matter in no-till crop-pasture rotations under direct grazing. Advances in Geoecology, 38, 233–241.
  • Tiemeyer, B., Freibauer, A., Borraz, E.A., Augustin, J., Bechtold, M., Beetz, S., Beyer, C., Ebli, M., Eickenscheidt, T., Fiedler, S., Förster, C., Gensior, A., Giebels, M., Glatzel, S., Heinichen, J., Hoffmann, M., Höper, H., Jurasinski, G., Laggner, A., & Drösler, M. (2020). A new methodology for organic soils in national greenhouse gas inventories: Data synthesis, derivation and application. Ecological Indicators, 109(October 2019), 105838. https://doi.org/10.1016/j.ecolind.2019.105838
  • Varela, M.F., Scianca, C.M., Taboada, M.A., & Rubio, G. (2014). Cover crop effects on soybean residue decomposition and P release in no-tillage systems of Argentina. Soil and Tillage Research, 143(November 2014), 59–66. https://doi.org/10.1016/j.still.2014.05.005https://doi.org/10.1016/j.still.2014.05.005.
  • Vega, E., Baldi, G., Jobbágy, E.G. & Paruelo, J.M. (2009). Land use change patterns in the Río de la Plata grasslands: The influence of phytogeographic and political boundaries. In Agriculture, Ecosystems and Environment 134(3–4), 287–292. https://doi.org/10.1016/j.agee.2009.07.011.
  • West, T.O., Bandaru, V., Brandt, C.C., Schuh, A.E., & Ogle, S.M. (2011). Regional uptake and release of crop carbon in the United States. Biogeosciences, 8(8), 2037–2046. https://doi.org/10.5194/bg-8-2037-2011
  • Williams, J.R., Arnold, J.G., Kiniry, J.R., Gassman, P.W., & Green, C.H. (2008). History of model development at Temple, Texas. In Hydrological Sciences Journal - Journal Des Sciences Hydrologiques 53(5), 948–960. https://doi.org/10.1623/hysj.53.5.948.
  • Williams, J.R., Jones, C.A., & Dyke, P.T. (1984). A modelling approach to determining the relationship between erosion and soil productivity. Transactions - American Society of Agricultural Engineers, 27(1), 129–144. https://doi.org/10.13031/2013.32748
  • Williams, J.R., Wang, E., Meinardus, A., Harman, W.L., Siemers, M., & Atwood, J.D. (2006). EPIC user guide v.0509. Texas A&M AgriLife Extension Center.
  • Zambrano-Bigiarini, M., & Rojas, R. (2013). A model-independent Particle Swarm Optimisation software for model calibration. Environmental Modelling and Software, 43, 5–25. https://doi.org/10.1016/j.envsoft.2013.01.004
  • Zhang, X., Izaurralde, R.C., Manowitz, D., West, T.O., Post, W.M., Thomson, A.M., Bandaru, V.P., Nichols, J., & Williams, J.R. (2010). An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems. GCB Bioenergy, 2(5), 258–277. https://doi.org/10.1111/j.1757-1707.2010.01046.x
  • Zhang, X., Izaurralde, R.C., Manowitz, D.H., Sahajpal, R., West, T.O., Thomson, A.M., Xu, M., Zhao, K., LeDuc, S.D., & Williams, J.R. (2015). Regional scale cropland carbon budgets: Evaluating a geospatial agricultural modeling system using inventory data. Environmental Modelling & Software, 63, 199–216. https://doi.org/10.1016/j.envsoft.2014.10.005
  • Zhu, G., Tang, Z., Chen, L., Shangguan, Z., & Deng, L. (2018). Overgrazing depresses soil carbon stock through changing plant diversity in temperate grassland of the loess plateau. Plant, Soil and Environment, 64(1), 1–6. https://doi.org/10.17221/610/2017-PSE

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.