4,473
Views
5
CrossRef citations to date
0
Altmetric
Review

Immunoactive preparations and regulatory responses in the respiratory tract: potential for clinical application in chronic inflammatory airway diseases

, , , , &
Pages 603-619 | Received 10 Feb 2020, Accepted 16 Mar 2020, Published online: 17 Apr 2020

References

  • Bousquet J, Bachert C, Canonica GW, et al. Unmet needs in severe chronic upper airway disease (SCUAD). J Allergy Clin Immunol. 2009;124(3):428–433. .
  • Achakulwisut P, Brauer M, Hystad P, et al. Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: estimates from global datasets. Lancet Planet Health. 2019;3(4):e166–e178.
  • Passali D, Cingi C, Staffa P, et al. The International Study of the Allergic Rhinitis Survey: outcomes from 4 geographical regions. Asia Pac Allergy. 2018;8(1):e7–e7.
  • Collaborators GCRD. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med. 2017 Sep;5(9):691–706.
  • Jin J-M, Sun Y-C. Allergy and chronic obstructive pulmonary disease. Chin Med J (Engl). 2017;130(17):2017–2020.
  • Jamieson DB, Matsui EC, Belli a, et al., Effects of allergic phenotype on respiratory symptoms and exacerbations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013; 188(2): 187–192.
  • Global Health Estimates. Deaths by cause, age, sex, by country and by region. Geneva: World Health Organization; 2016. p. 2000–2016.
  • Hens G, Vanaudenaerde BM, Bullens DMA, et al. Original article: sinonasal pathology in nonallergic asthma and COPD: ‘united airway disease’ beyond the scope of allergy: sinonasal pathology in nonallergic asthma and COPD. Allergy. 2007;63(3):261–267.
  • Yii ACA, Tay TR, Choo XN, et al. Precision medicine in united airways disease: a “treatable traits” approach. Allergy. 2018;73(10):1964–1978.
  • Singh D, Agusti A, Anzueto A, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: the GOLD science committee report 2019. LID - 1900164 [pii] LID – DOI:10.1183/13993003.00164-2019.
  • Global Initiative for asthma. Global strategy for asthma management and prevention, 2018. [ cited 2020 Mar 1]]. Available from: www.ginasthma.org
  • Dykewicz MS, Wallace DV, Baroody F, et al. Treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2017;119(6):489–511.
  • Sridhar S, Liu H, Pham T-H, et al. Modulation of blood inflammatory markers by benralizumab in patients with eosinophilic airway diseases. Respir Res. 2019;20(1):14.
  • Rabe KF, Nair P, Brusselle G, et al. Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N Engl J Med. 2018;378(26):2475–2485.
  • Bachert C, Hellings PW, Mullol J, et al. Dupilumab improves patient-reported outcomes in patients with chronic rhinosinusitis with nasal polyps and comorbid asthma. J Allergy Clin Immunol. 2019;7(7):2447–2449.
  • Masieri S, Cavaliere C, Begvarfaj E, et al. Effects of omalizumab therapy on allergic rhinitis: a pilot study. (2284-0729 (Electronic)).
  • European Academy of Allergy and Clinical Immunology, Global Atlas of Aallergy. June 2019.
  • Fardet L, Petersen I, Nazareth I. Common infections in patients prescribed systemic glucocorticoids in primary care: a population-based cohort study. PLoS Med. 2016;13(5):e1002024.
  • Yang M, Zhang Y, Chen H, et al., Inhaled corticosteroids and risk of upper respiratory tract infection in patients with asthma: a meta-analysis. Infection 2019; 47(3): 377–385.
  • Di Pasquale MF, Sotgiu G, Gramegna A, et al. Prevalence and etiology of community-acquired pneumonia in immunocompromised patients. Clinl Infect Dis. 2019;68(9):1482–1493..
  • Seemungal TAR, Harper-Owen R, Bhowmik a, et al. Detection of rhinovirus in induced sputum at exacerbation of chronic obstructive pulmonary disease. Eur Respir J. 2000;16(4):677. .
  • Bjerregaard a, Laing IA, Poulsen N, et al. Characteristics associated with clinical severity and inflammatory phenotype of naturally occurring virus-induced exacerbations of asthma in adults. Respir Med. 2017;123:34–41..
  • Stefan MS, Shieh M-S, Spitzer KA, et al. Association of antibiotic treatment with outcomes in patients hospitalized for an asthma exacerbation treated with systemic corticosteroids. JAMA Intern Med. 2019;179(3):333–339.
  • Abt MC, Osborne LC, Monticelli LA, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity. 2012;37(1):158–170.
  • Li N, Ma W-T, Pang M, et al. The commensal microbiota and viral infection: a comprehensive review. Front Immunol. 2019;10:1551.
  • Lee KH, Gordon a, Shedden K, et al. The respiratory microbiome and susceptibility to influenza virus infection. Plos One. 2019;14(1):e0207898. en. .
  • Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259–1260. en.
  • Haahtela, T. A biodiversity hypothesis. Allergy. 2019;74(8):1445–1456.
  • Rook GAW. Hygiene hypothesis and autoimmune diseases. Clin Rev Allergy Immunol. 2012;42(1):5–15..
  • Marsland BJ, Trompette A, Gollwitzer ES The gut-lung axis in respiratory disease. (2325-6621 (Electronic)).
  • Anand S, Mande SS. Diet, microbiota and gut-lung connection. Front Microbiol. 2018;9:2147.
  • Dang AT, Marsland BJ. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 2019 Jul 01;12(4):843–850.
  • Esposito S, Soto-Martinez ME, Feleszko W, et al., Nonspecific immunomodulators for recurrent respiratory tract infections, wheezing and asthma in children: a systematic review of mechanistic and clinical evidence. Curr Opin Allergy Clin Immunol. 18(3): 198–209. en. 2018.
  • Keely S, Talley NJ, Hansbro PM. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol. 2012 Jan 01;5(1):7–18.
  • Navarro S, Cossalter G, Chiavaroli C, et al. The oral administration of bacterial extracts prevents asthma via the recruitment of regulatory T cells to the airways. Mucosal Immunol. 2011;4(1):53–65.
  • Feleszko W, Jaworska J, Hamelmann E. Toll-like receptors—novel targets in allergic airway disease (probiotics, friends and relatives). Eur J Pharmacol. 2006;533(1–3):308–318.
  • Debock I, Flamand V. Unbalanced neonatal CD4(+) T-cell immunity. Front Immunol. 2014;5:393.
  • Pulendran B, Artis D. New paradigms in type 2 immunity. Science. 2012;3376093:431–435.
  • Spisek R, Brazova J, Rozkova D, et al. Maturation of dendritic cells by bacterial immunomodulators. Vaccine. 2004 Jul 29;22(21–22):2761–2768. PubMed PMID: WOS:000223001900015.
  • Hu X, Zheng W, Wang L, et al. The detailed analysis of the changes of murine dendritic cells (DCs) induced by thymic peptide pidotimod(PTD). Hum Vaccin Immunother. 2012 Sep;8(9):1250–1258.
  • Bystron J, Hermanova Z, Szotkovska J, et al. Comparison of the effect of ribosomal immunotherapy on plasma levels of total IgE and cytokines IL-4, IL-5, IL-12 and IFN gamma in adult atopic and non-atopic patients during the pollen season. Clin Drug Investig. 2004;24(12):755–760.
  • Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677–689.
  • Kearney SC, Dziekiewicz M, Feleszko W. Immunoregulatory and immunostimulatory responses of bacterial lysates in respiratory infections and asthma. Ann Allergy Asthma Immunol. 2015 May;114(5):364–369.
  • Mortaz E, Adcock IM, Folkerts G, et al. Probiotics in the Management of Lung Diseases. Mediators Inflamm. 2013;2013:1–10.
  • Papizadeh M, Rohani M, Nahrevanian H, et al. Probiotic characters of Bifidobacterium and Lactobacillus are a result of the ongoing gene acquisition and genome minimization evolutionary trends. Microb Pathog. 2017;111:118–131.
  • Obieglo K, van Wijck Y, de Kleijn S, et al. Microorganism-induced suppression of allergic airway disease: novel therapies on the horizon? Expert Rev Respir Med. 2014;8(6):717–730.
  • Feleszko W, Jaworska J, Rha RD, et al., Probiotic-induced suppression of allergic sensitization and airway inflammation is associated with an increase of T regulatory-dependent mechanisms in a murine model of asthma. Clin Exp Allergy. 2007; 37(4): 498–505.
  • Anatriello E, Cunha M, Nogueira J, et al. Oral feeding of Lactobacillus bulgaricus N45.10 inhibits the lung inflammation and airway remodeling in murine allergic asthma: relevance to the Th1/Th2 cytokines and STAT6/T-bet. Cell Immunol. 2019;341:103928.
  • Lin J, Zhang Y, He C, et al. Probiotics supplementation in children with asthma: a systematic review and meta-analysis: probiotics in children with asthma. J Paediatr Child Health. 2018;54(9):953–961.
  • Wei, X., Jiang, P., Liu, J, et al. Association between probiotic supplementation and asthma incidence in infants: a meta-analysis of randomized controlled trials. Journal of Asthma 2020; 57(2), 167–178.
  • Zuccotti G, Meneghin F, Aceti a, et al. Probiotics for prevention of atopic diseases in infants: systematic review and meta-analysis. Allergy. 2015;70(11):1356–1371. .
  • Edwards MR, Walton RP, Jackson DJ, et al. The potential of anti-infectives and immunomodulators as therapies for asthma and asthma exacerbations. Allergy. 2018;73(1):50–63.
  • Morimoto K, Takeshita T, Nanno M, et al. Modulation of natural killer cell activity by supplementation of fermented milk containing Lactobacillus casei in habitual smokers. Prev Med. 2005;40(5):589–594.
  • Mortaz E, Adcock IM, Ricciardolo FLM, et al. Anti-inflammatory effects of lactobacillus rahmnosus and bifidobacterium breve on cigarette smoke activated human macrophages. Plos One. 2015;10(8):e0136455. .
  • Fokkens WJ, Lund VJ, Mullol J, et al. EPOS 2012: european position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinol J. 2012;50(1):1–12.
  • Reh DD, Higgins TS, Smith TL. Impact of tobacco smoke on chronic rhinosinusitis: a review of the literature. Int Forum Allergy Rhinol. 2012;2(5):362–369 en.
  • Krysko O, Holtappels G, Zhang N, et al. Alternatively activated macrophages and impaired phagocytosis of S. aureus in chronic rhinosinusitis: phagocytosis and macrophage phenotype in CRS. Allergy. 2011;66(3):396–403.
  • Foreman a, Holtappels G, Psaltis AJ, et al. Adaptive immune responses in Staphylococcus aureus biofilm-associated chronic rhinosinusitis: immune responses in S. aureus biofilm-associated CRS. Allergy. 2011;66(11):1449–1456.
  • Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4. J Allergy Clin Immunol. 2012;130(5):1087–1096.
  • Van, Zele T, Gevaert P, et al. Local immunoglobulin production in nasal polyposis is modulated by superantigens. Clin Exp Allergy. 2007;37(12):1840–1847..
  • Cervin AU. The potential for topical probiotic treatment of chronic rhinosinusitis, a personal perspective. Front Cell Infect Microbiol. 2018;7:530.
  • Stubbendieck RM, Straight PD. Multifaceted Interfaces of Bacterial Competition. J Bacteriol. 2016;198(16):2145–2155.
  • Yang Y, Jing Y, Yang J, et al. Effects of intranasal administration with Bacillus subtilis on immune cells in the nasal mucosa and tonsils of piglets. Exp Ther Med. 2018;15:5189–5198.
  • Mårtensson a, Abolhalaj M, Lindstedt M, et al., Clinical efficacy of a topical lactic acid bacterial microbiome in chronic rhinosinusitis: a randomized controlled trial: nasal effects of a LAB microbiome in CRSsNP. Laryngoscope Investig Otolaryngol 2017; 2(6): 410–416.
  • Mukerji SS, Pynnonen MA, Kim HM, et al. Probiotics as adjunctive treatment for chronic rhinosinusitis: a randomized controlled trial. Otolaryngol Head Neck Surg. 2009;140(2):202–208.
  • Kaplan, A. Canadian guidelines for chronic rhinosinusitis: clinical summary. Canadian Family Physician 2013; 59(12):1275–1281.
  • Rosenfeld RM, Piccirillo JF, Chandrasekhar SS, et al. Clinical practice guideline (update): adult sinusitis.Otolaryngology–Head and Neck Surgery 2015;152(2):S1–S39
  • Orlandi RR, Kingdom TT, Hwang PH. International consensus statement on allergy and rhinology: rhinosinusitis executive summary: ICAR executive summary. Int Forum Allergy Rhinol. 2016;6(S1):S3–S21.
  • Felice GD, Barletta B, Butteroni C, et al. Use of probiotic bacteria for prevention and therapy of allergic diseases: studies in mouse model of allergic sensitization. J Clin Gastroenterol. 2008;42:S130–S132
  • Özdemir Ö. Various effects of different probiotic strains in allergic disorders: an update from laboratory and clinical data: various effects of probiotics in allergy. Clin Exp Immunol. 2010;160(3):295–304
  • Ren J, Zhao Y, Huang S, et al. Immunomodulatory effect of Bifidobacterium breve on experimental allergic rhinitis in BALB/c mice. Experimental and Therapeutic Medicine 2018;16:3996–4004.
  • Giovannini M, Agostoni C, Riva E, et al. A randomized prospective double blind controlled trial on effects of long-term consumption of fermented milk containing lactobacillus casei in pre-school children with allergic asthma and/or rhinitis. Pediatr Res. 2007;62(2):215–220. .
  • Güvenç IA, Muluk NB, Mutlu FŞ, et al. Do Probiotics have a role in the treatment of allergic rhinitis? A comprehensive systematic review and metaanalysis. Am J Rhinol Allergy. 2016;30(5):e157–e175.
  • Zajac AE, Adams AS, Turner JH. Asystematic review and meta-analysis of probiotics for the treatment of allergic rhinitis: probiotics for the treatment of AR. Int Forum Allergy Rhinol. 2015;5(6):524–532.
  • Peng Y, Li a, Yu L, et al., The role of probiotics in prevention and treatment for patients with allergic rhinitis: a systematic review. Am J Rhinol Allergy. 29(4): 292–298. en. 2015. .
  • Brożek JL, Bousquet J, Agache I, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines—2016 revision. J Allergy Clin Immunol. 2017;140(4):950–958.
  • Gelardi M, De Luca C, Taliente S, et al. Adjuvant treatment with a symbiotic in patients with inflammatory non-allergic rhinitis. J Biol Regul Homeost Agents. 2017;31:201–206.
  • Hellings PW, Klimek L, Cingi C, et al. Non-allergic rhinitis: position paper of the European Academy of Allergy and Clinical Immunology. Allergy. 2017;72(11):1657–1665. en. .
  • Seidman MD, Gurgel RK, Lin SY, et al. Clinical practice guideline: allergic rhinitis. Otolaryngology–Head and Neck Surgery 2015; 152(1_suppl), S1-S43.
  • Manolova V, Flace a, Jeandet P, et al. Biomarkers induced by the immunomodulatory bacterial extract OM-85: unique roles for Peyer’s patches and intestinal epithelial cells. J Clinical Cellular Immunol. 2017;08:494.
  • Dang AT, Pasquali C, Ludigs K, et al. OM-85 is an immunomodulator of interferon-beta production and inflammasome activity. Sci Rep. 2017 7, 43844. ;7. .
  • Huber M, Mossmann H, Bessler WG. Th1-orientated immunological properties of the bacterial extract OM-85-BV. Eur J Med Res. 2005 ;10(5):209–217. .
  • Luan H, Zhang Q, Wang L, et al. OM85-BV Induced the Productions of IL-1 beta, IL-6, and TNF-alpha via TLR4-and TLR2-Mediated ERK1/2/NF-kappa B Pathway in RAW264.7 Cells. J Interferon Cytokine Res. 2014 ;34(7):526–536.
  • Liao J-Y, Zhang T. Influence of OM-85 BV on hBD-1 and immunoglobulin in children with asthma and recurrent respiratory tract infection. Zhongguo Dang Dai Er Ke Za Zhi. 201416(5):508–512..
  • Roth M, Pasquali C, Stolz D, et al., Broncho Vaxom (OM-85) modulates rhinovirus docking proteins on human airway epithelial cells via Erk1/2 mitogen activated protein kinase and cAMP. Plos One 2017. 12(11): e0188010. 2017. .
  • Strickland DH, Judd S, Thomas JA, et al. Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control. Mucosal Immunol. 2011;4(1):43–52.
  • Fu R, Li J, Zhong H, et al. Broncho-Vaxom attenuates allergic airway inflammation by restoring GSK3β-related T regulatory cell insufficiency. PloS One 2014;9(3).
  • Rodrigues a, Gualdi LP, De Souza RG, et al. Bacterial extract (OM-85) with human-equivalent doses does not inhibit the development of asthma in a murine model. Allergol Immunopathol (Madr). 2016 Nov-Dec;44(6):504–511.
  • Hua Zhong JW, Yao Y, Ran F, et al. a bacterial extract of OM-85 Broncho-Vaxom suppresses ovalbumin-induced airway inflammation and remodeling in a mouse chronic allergic asthma model. Int J Clin Exp Pathol. 2017;10:8.
  • Lu Y, Li Y, Xu L, et al. Bacterial lysate increases the percentage of natural killer T cells in peripheral blood and alleviates asthma in children. Pharmacology. 2015;95(3–4):139–144. .
  • Boer G, Żółkiewicz J, Strzelec K, et al. Bacterial lysate add-on therapy for the prevention of wheezing episodes and asthma exacerbations: a systematic review and meta-analysis Eur Resp Rev 2020 [under revision].
  • Chen ZGJ, Li JZ, Chen M, et al. Effect and analysis of clinical efficacy of immunomodulator on serum levels of IL-4 and IFN-gamma in asthmatic children. J Sun Yat-sen Univ Med Sci. 2009;30(3) ( Chinese).
  • Han RF, Li HY, Wang JW, et al. Study on clinical effect and immunologic mechanism of infants capillary bronchitis secondary bronchial asthma treated with bacterial lysates Broncho-Vaxom. Eur Rev Med Pharmacol Sci. 2016 ;20(10):2151–2155. .
  • Yin J, Xu B, Zeng X, et al. Broncho-Vaxom in pediatric recurrent respiratory tract infections: a systematic review and meta-analysis. Int Immunopharmacol. 2018;54:198–209
  • Clinicaltrials.gov: NCT02148796. [cited 2019 Nov]. Available from: https://clinicaltrials.gov/ct2/show/NCT02148796
  • Emmerich B, Pachmann K, Milatovic D, et al. Influence of OM-85 BV on different humoral and cellular immune defense mechanisms of the respiratory tract. Respiration. 1992;59(3):19–23.
  • Zou Y, Chen X, Liu J, et al. Serum IL-1β and IL-17 levels in patients with COPD: associations with clinical parameters. Int J Chron Obstruct Pulmon Dis20171247–1254.
  • Pan L, Jiang X-G, Guo J, et al. Effects of OM-85 BV in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. J Clin Pharmacol. 2015 Oct;55(10):1086–1092. PubMed PMID: WOS:000360831700003.
  • Boer G, Braunstahl G. Bacterial lystes as add-on therapy in obstructive lung diseases: a systematic review and a meta-analysis. Abstract TP0797. European Academy of Allergy and Clinical Immunology (EAACI); 01-05 June; Lisbon, Portugal 2019.
  • Bergemann R, Brandt A, Zoellner U, et al. Preventive treatment of chronic bronchitis: a meta-analysis of clinical trials with a bacterial extract (OM-85 BV) and a cost-effectiveness analysis. Monaldi Arch Chest Dis. 1994 ;49(4):302–307. .
  • Collet JP, Ducruet T, Haider S, et al. Economic impact of using an immunostimulating agent to prevent severe acute exacerbations in patients with chronic obstructive pulmonary disease. Can Respir J. 2001;8(1):27–33.
  • Koatz a, Zakin L, Ciceran a. Cost consequence of preventive treatment with OM-85 bacterial lysate compared to the same patients without OM-85 the previous year in allergic rhinitis, asthma and COPD in Argentina. Value Health. 2015;18(7):A498.
  • Tao Y, Yuan T, Li X, et al. Bacterial extract OM-85 BV protects mice against experimental chronic rhinosinusitis. Int J Clin Exp Pathol. 2015;8(6):6800–6806.
  • Triantafillou V, Workman AD, Patel NN, et al. Broncho‐Vaxom® (OM‐85 BV) soluble components stimulate sinonasal innate immunity. Int Forum Allergy Rhinol. 2019;9(4):370–377. en. .
  • Zagar S, Löfler-Badzek D. Broncho-vaxom® in children with rhinosinusitis: a double-blind clinical trial. ORL. 1988;50(6):397–404.
  • Chen J, Zhou Y, Nie J, et al..Bacterial lysate for the prevention of chronic rhinosinusitis recurrence in children. J Laryngol Otol. 2017;131(6):523–528.
  • Heintz B, Schlenter W, Kirsten R, et al. Clinical efficacy of Broncho-Vaxom in adult patients with chronic purulent sinusitis–a multi-centric, placebo-controlled, double-blind study. International journal of clinical pharmacology, therapy, and toxicology, 1989, 27(11): 530-534..
  • Xuan J, Wang L, Yin H, et al. The cost-effectiveness of OM-85 in managing respiratory tract infections in China. J Med Econ. 2015 Mar;18(3):167–172.
  • Dibildox-Martinez J, Mayorga Butron JL, Macías Fernández LA, et al. Pan-American clinical guideline on rhinosinusitis. Otolaryngol Head Neck Surg. 2012;147(2_suppl):P253–P253
  • Han L, Zheng C-P, Sun Y-Q, et al. Abacterial extract of OM-85 Broncho-Vaxom prevents allergic rhinitis in mice. Am J Rhinol Allergy. 2014 Mar-Apr;28(2):110–116.
  • Koatz AM, Coe NA, Cicerán A, et al. Clinical and Immunological benefits of OM-85 bacterial lysate in patients with allergic rhinitis, asthma, and COPD and recurrent respiratory infections. Lung. 2016;194(4):687–697.
  • Meng Q, Li P, Li Y, et al. Broncho-vaxom alleviates persistent allergic rhinitis in patients by improving Th1/Th2 cytokine balance of nasal mucosa. Rhinology 2019; 57(6), 451-459.
  • Cazzola M, Capuano A, Rogliani P, et al. Bacterial lysates as a potentially effective approach in preventing acute exacerbation of COPD. Curr Opin Pharmacol. 2012;12(3):300–308. .
  • Esposito S, Garziano M, Rainone V, et al. Immunomodulatory activity of pidotimod administered with standard antibiotic therapy in children hospitalized for community-acquired pneumonia. J Transl Med. 2015 ;3;13. PubMed
  • Carta S, Silvestri M, Rossi GA. Modulation of airway epithelial cell functions by Pidotimod: NF-kappa B cytoplasmatic expression and its nuclear translocation are associated with an increased TLR-2 expression. Ital J Pediatr. 2013 10;39. .
  • Kim C-H, Kim D-J, Lee S-J, et al. Toll-like receptor 2 promotes bacterial clearance during the initial stage of pulmonary infection with Acinetobacter baumannii. Mol Med Rep. 2014;9(4):1410–1414.
  • Ferrario BE, Garuti S, Braido F, et al. Pidotimod: the state of art. Clinical and molecular allergy. CMA. 2015;13(1):8. P.
  • Singh DP, Bagam P, Sahoo MK, et al. Immune-related gene polymorphisms in pulmonary diseases. Toxicology. 2017;383:24–39.
  • Gaballah HH, Gaber RA, Sharshar RS, et al. NOD2 expression, DNA damage and oxido-inflammatory status in atopic bronchial asthma: exploring their nexus to disease severity. Gene. 2018;660:128–135.
  • Gourgiotis D, Papadopoulos NG, Bossios a, et al. Immune modulator pidotimod decreases the in vitro expression of CD30 in peripheral blood mononuclear cells of atopic asthmatic and normal children. J Asthma. 2004 ;41(3):285–287.
  • Polte T, Behrendt a, Hansen G. Direct evidence for a critical role of CD30 in the development of allergic asthma. J Allergy Clin Immunol. 2006;118(4):942–948.
  • Del Prete G, De Carli M, Almerigogna F, et al. Preferential expression of CD30 by human CD4+ T cells producing Th2-type cytokines. Faseb J. 1995;9(1):81–86.
  • Manetti R, Annunziato F, Biagiotti R, et al. CD30 expression by CD8+ T cells producing type 2 helper cytokines. Evidence for large numbers of CD8+CD30+ T cell clones in human immunodeficiency virus infection.. J Exp Med. 1994;180(6):2407–2411.
  • Fu L-Q, Li Y-L, Fu a-K, et al. Pidotimod exacerbates allergic pulmonary infection in an OVA mouse model of asthma. Mol Med Rep. 2017;16(4):4151–4158.
  • Namazova-Baranova LS, Alekseeva AA, Kharit SM, et al. Efficacy and safety of pidotimod in the prevention of recurrent respiratory infections in children: a multicentre study. Int J Immunopathol Pharmacol. 2014; 27(3):413–419.
  • Benetti G, Illeni M, Passera a, et al. Ex vivo evaluation of pidotimod activity in patients with chronic obstructive pulmonary disease. (0004-4172 (Print)). eng.
  • Bisetti A, Ciappi G, Bariffi F, et al. Evaluation of the efficacy of pidotimod in the exacerbations in patients affected with chronic bronchitis. Arzneimittel-Forschung, 1994; 44(12A), 1499-1502
  • Pozzi E, Dolcetti A, Orlandi O, et al. Pidotimod in the treatment of patients affected by bacterial exacerbations of chronic bronchitis. 1994:1495–1498.
  • CiacciaA .Pidotimod activity against chronic bronchitis exacerbations. Arzneimittel-Forschung 1994; 44(12A), 1516-1520
  • Cazzola M, Anapurapu S, Page CP. Polyvalent mechanical bacterial lysate for the prevention of recurrent respiratory infections: a meta-analysis. Pulm Pharmacol Ther. 2012;25(1):62–68.
  • Bartkowiak-Emeryk M, et al. The influence of polyvalent mechanical bacterial lysate on immunological parameters in asthmatic children. Abstract 0078. European Academy of Allergy and Clinical Immunology Congress; 17-21 June 2017; Helsinki 2017.
  • Lanzilli G, Traggiai E, Braido F, et al. Administration of a polyvalent mechanical bacterial lysate to elderly patients with COPD: effects on circulating T, B and NK cells. Immunol Lett. 2013 ;149(1–2):62–67.
  • Cazzola M, Noschese P, Di Perna F. Value of adding a polyvalent mechanical bacterial lysate to therapy of COPD patients under regular treatment with salmeterol/fluticasone. Ther Adv Respir Dis. 2009 ;3(2):59–63.
  • Braido F, Melioli G, Cazzola M, et al. Sub-lingual administration of a polyvalent mechanical bacterial lysate (PMBL) in patients with moderate, severe, or very severe chronic obstructive pulmonary disease (COPD) according to the GOLD spirometric classification: a multicentre, double-blind, randomised, controlled, phase IV study (AIACE study: advanced Immunological Approach in COPD Exacerbation). Pulm Pharmacol Ther. 2015;33:75–80.
  • Ricci R, Palmero C, Bazurro G, et al. The administration of a polyvalent mechanical bacterial lysate in elderly patients with COPD results in serological signs of an efficient immune response associated with a reduced number of acute episodes. Pulm Pharmacol Ther. 2014 27(1):109–113. .
  • Banche G, Allizond V, Mandras N, et al. Improvement of clinical response in allergic rhinitis patients treated with an oral immunostimulating bacterial lysate: in vivo immunological effects. Int J Immunopathol Pharmacol. 2007;20(1):129–138. en.
  • Janeczek K, Emeryk A, Rapiejko P. Effect of polyvalent bacterial lysate on the clinical course of pollen allergic rhinitis in children. Adv Dermatol Allergology. 2019;36(4):504–505.
  • Mulder WJM, Ochando J, Joosten LAB, et al. Therapeutic targeting of trained immunity. Nat Rev Drug Discov. 2019;18(7):553–566. en. .