206
Views
0
CrossRef citations to date
0
Altmetric
Review

The potential of volatile organic compound analysis for pathogen detection and disease monitoring in patients with cystic fibrosis

, ORCID Icon, , &
Pages 723-735 | Received 05 Jan 2022, Accepted 18 Jul 2022, Published online: 01 Aug 2022

References

  • Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245(4922):1066–1073.
  • O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet. 2009;373(9678):1891–1904.
  • Skov M, Hansen CR, Pressler T. Cystic fibrosis - an example of personalized and precision medicine. Apmis. 2019;127(5):352–360.
  • Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections. Am J Respir Cell Mol Biol. 2018;58(4):428–439.
  • Henry RL, Mellis CM, Petrovic L. Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol. 1992;12(3):158–161.
  • Emerson J, Rosenfeld M, McNamara S, et al. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol. 2002;34(2):91–100.
  • Com G, Carroll JL, Castro MM, et al. Predictors and outcome of low initial forced expiratory volume in 1 second measurement in children with cystic fibrosis. J Pediatr. 2014;164(4):832–838.
  • Fenn D, Abdel-Aziz MI, Brinkman P, et al. Comparison of microbial composition of cough swabs and sputum for pathogen detection in patients with cystic fibrosis. J Cyst Fibros. 2022;21(1):52–60.
  • Ramsey BW, Wentz KR, Smith AL, et al. Predictive value of oropharyngeal cultures for identifying lower airway bacteria in cystic fibrosis patients. Am Rev Respir Dis. 1991;144(2):331–337.
  • Sagel SD, Kapsner R, Osberg I, et al. Airway inflammation in children with cystic fibrosis and healthy children assessed by sputum induction. Am J Respir Crit Care Med. 2001;164(8 Pt 1):1425–1431.
  • van de Kant KD, van der Sande LJ, Jobsis Q, et al. Clinical use of exhaled volatile organic compounds in pulmonary diseases: a systematic review. Respir Res. 2012;13(1):117.
  • Filipiak W, Beer R, Sponring A, et al. Breath analysis for in vivo detection of pathogens related to ventilator-associated pneumonia in intensive care patients: a prospective pilot study. J Breath Res. 2015;9(1):016004.
  • Bregy L, Müggler AR, Martinez-Lozano Sinues P, et al. Differentiation of oral bacteria in in vitro cultures and human saliva by secondary electrospray ionization - mass spectrometry. Sci Rep. 2015;5(1):15163.
  • Oakley-Girvan I, Davis SW. Breath based volatile organic compounds in the detection of breast, lung, and colorectal cancers: a systematic review. Cancer Biomark. 2017;21(1):29–39.
  • Ahmed WM, Lawal O, Nijsen TM, et al. Exhaled volatile organic compounds of infection: a systematic review. ACS Infect Dis. 2017;3(10):695–710.
  • Hamilton BK, Rybicki LA, Grove D, et al. Breath analysis in gastrointestinal graft-versus-host disease after allogeneic hematopoietic cell transplantation. Blood Adv. 2019;3(18):2732–2737.
  • Bos LDJ, Meinardi S, Blake D, et al. Bacteria in the airways of patients with cystic fibrosis are genetically capable of producing VOCs in breath. J Breath Res. 2016;10(4):047103.
  • Schulz S, Dickschat JS. Bacterial volatiles: the smell of small organisms. Nat Prod Rep. 2007;24(4):814–842.
  • Quinn RA, Phelan VV, Whiteson KL, et al. Microbial, host and xenobiotic diversity in the cystic fibrosis sputum metabolome. ISME J. 2016;10(6):1483–1498.
  • Bean HD, Zhu J, Hill JE. Characterizing bacterial volatiles using secondary electrospray ionization mass spectrometry (SESI-MS). J Vis Exp. 2011;52. e266
  • Bos LD, Sterk PJ, Schultz MJ. Volatile metabolites of pathogens: a systematic review. PLoS Pathog. 2013;9(5):e1003311.
  • Goeminne PC, Vandendriessche T, Van Eldere J, et al. Detection of Pseudomonas aeruginosa in sputum headspace through volatile organic compound analysis. Respir Res. 2012;13(1):87.
  • Barker M, Hengst M, Schmid J, et al., Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis. Eur Respir J. 2006;27(5): 929–936. .
  • Robroeks CM, van Berkel JJ, Dallinga JW, et al., Metabolomics of volatile organic compounds in cystic fibrosis patients and controls. Pediatr Res. 2010;68(1): 75–80. .
  • Scott-Thomas AJ, Syhre M, Pattemore PK, et al. 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulm Med. 2010;10(1):56.
  • Savelev SU, Perry JD, Bourke SJ, et al. Volatile biomarkers of Pseudomonas aeruginosa in cystic fibrosis and noncystic fibrosis bronchiectasis. Lett Appl Microbiol. 2011;52(6):610–613.
  • Gilchrist FJ, Bright-Thomas RJ, Jones AM, et al. Hydrogen cyanide concentrations in the breath of adult cystic fibrosis patients with and without Pseudomonas aeruginosa infection. J Breath Res. 2013;7(2):026010.
  • Joensen O, Paff T, Haarman EG, et al. Exhaled breath analysis using electronic nose in cystic fibrosis and primary ciliary dyskinesia patients with chronic pulmonary infections. PLoS One. 2014;9(12):e115584.
  • Gilchrist FJ, Belcher J, Jones AM, et al., Exhaled breath hydrogen cyanide as a marker of early Pseudomonas aeruginosa infection in children with cystic fibrosis. ERJ Open Res. 2015;1(2): 00044–02015. .
  • Španěl P, Sovová K, Dryahina K, et al. Do linear logistic model analyses of volatile biomarkers in exhaled breath of cystic fibrosis patients reliably indicate Pseudomonas aeruginosa infection? J Breath Res. 2016;10(3):036013.
  • Pabary R, Huang J, Kumar S, et al. Does mass spectrometric breath analysis detect Pseudomonas aeruginosa in cystic fibrosis? Eur Respir J. 2016;47(3):994–997.
  • Nasir M, Bean HD, Smolinska A, et al. Volatile molecules from bronchoalveolar lavage fluid can ‘rule-in’ Pseudomonas aeruginosa and ‘rule-out’ Staphylococcus aureus infections in cystic fibrosis patients. Sci Rep. 2018;8(1):826.
  • Neerincx AH, Geurts BP, van Loon J, et al. Detection of Staphylococcus aureus in cystic fibrosis patients using breath VOC profiles. J Breath Res. 2016;10(4):046014.
  • Syhre M, Scotter JM, Chambers ST. Investigation into the production of 2-Pentylfuran by Aspergillus fumigatus and other respiratory pathogens in vitro and human breath samples. Med Mycol. 2008;46(3):209–215.
  • de Heer K, Kok MG, Fens N, et al. Detection of airway colonization by aspergillus fumigatus by use of electronic nose technology in patients with cystic fibrosis. J Clin Microbiol. 2016;54(3):569–575.
  • White IR, Willis KA, Whyte C, et al. Real-time multi-marker measurement of organic compounds in human breath: towards fingerprinting breath. J Breath Res. 2013;7(1):017112.
  • McGrath LT, Patrick R, Mallon P, et al. Breath isoprene during acute respiratory exacerbation in cystic fibrosis. Eur Respir J. 2000;16(6):1065–1069.
  • Paff T, van der Schee MP, Daniels JM, et al., Exhaled molecular profiles in the assessment of cystic fibrosis and primary ciliary dyskinesia. J Cyst Fibros. 2013;12(5): 454–460. .
  • Van Horck M, Dompeling E, Jobsis R. Prediction of CF exacerbations in children by exhaled inflammation markers. Eur Respir J. 2015;46(suppl 59): PA2056.
  • Enderby B, Smith D, Carroll W, et al. Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis. Pediatr Pulmonol. 2009;44(2):142–147.
  • Kramer R, Sauer-Heilborn A, Welte T, et al. A rapid method for breath analysis in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis. 2015;34(4):745–751.
  • van Mastrigt E, Reyes-Reyes A, Brand K, et al., Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis. J Breath Res. 2016;10(2): 026003. .
  • Bannier M, van de Kant KDG, Jobsis Q, et al. Feasibility and diagnostic accuracy of an electronic nose in children with asthma and cystic fibrosis. J Breath Res. 2019;13(3):036009.
  • Davis Trenton J, Karanjia Ava V, Bhebhe Charity N, et al. Pseudomonas aeruginosa volatilome characteristics and adaptations in chronic cystic fibrosis lung infections. mSphere. 2020;5(5):e00843–00820.
  • Sanchez-Guijo A, Hartmann MF, Wudy SA. Introduction to gas chromatography-mass spectrometry. Methods Mol Biol. 2013;1065:27–44.
  • Kamath KS, Pascovici D, Penesyan A, et al. Pseudomonas aeruginosa cell membrane protein expression from phenotypically diverse cystic fibrosis isolates demonstrates host-specific adaptations. J Proteome Res. 2016;15(7):2152–2163.
  • Kaeslin J, Micic S, Weber R, et al. Differentiation of cystic fibrosis-related pathogens by volatile organic compound analysis with secondary electrospray ionization mass spectrometry. Metabolites. 2021;11(11):773.
  • Isles A, Maclusky I, Corey M, et al. Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr. 1984;104(2):206–210.
  • Shommu NS, Vogel HJ, Storey DG. Potential of metabolomics to reveal Burkholderia cepacia complex pathogenesis and antibiotic resistance. Front Microbiol. 2015;6:668.
  • Grosse-Onnebrink J, Stehling F, Tschiedel E, et al. Bacteraemia and fungaemia in cystic fibrosis patients with febrile pulmonary exacerbation: a prospective observational study. BMC Pulm Med. 2017;17(1):96.
  • Desai M, Buhler T, Weller PH, et al. Increasing resistance of planktonic and biofilm cultures of Burkholderia cepacia to ciprofloxacin and ceftazidime during exponential growth. J Antimicrob Chemother. 1998;42(2):153–160.
  • Caraher E, Reynolds G, Murphy P, et al. Comparison of antibiotic susceptibility of Burkholderia cepacia complex organisms when grown planktonically or as biofilm in vitro. Eur J Clin Microbiol Infect Dis. 2007;26(3):213–216.
  • Dales L, Ferris W, Vandemheen K, et al. Combination antibiotic susceptibility of biofilm-grown Burkholderia cepacia and Pseudomonas aeruginosa isolated from patients with pulmonary exacerbations of cystic fibrosis. Eur J Clin Microbiol Infect Dis. 2009;28(10):1275–1279.
  • Loutet SA, Valvano MA. A decade of Burkholderia cenocepacia virulence determinant research. Infect Immun. 2010;78(10):4088–4100.
  • Binson VA, Subramoniam M. Design and development of an e-nose system for the diagnosis of pulmonary diseases. Acta Bioeng Biomech. 2021;23(1):35–44.
  • Jaeschke C, Padilla M, Glockler J, et al. Modular Breath Analyzer (MBA): introduction of a breath analyzer platform based on an innovative and unique, modular enose concept for breath diagnostics and utilization of calibration transfer methods in breath analysis studies. Molecules. 2021;26(12):3776.
  • Moor CC, Oppenheimer JC, Nakshbandi G, et al. Exhaled breath analysis by use of eNose technology: a novel diagnostic tool for interstitial lung disease. Eur Respir J. 2021;57(1). DOI:10.1183/13993003.02042-2020.
  • Tonezzer M, Armellini C, Toniutti L. Sensing performance of thermal electronic noses: a comparison between ZnO and SnO2 nanowires. Nanomaterials (Basel). 2021;11(11):2773.
  • Oliveira LF, Mallafre-Muro C, Giner J, et al. Breath analysis using electronic nose and gas chromatography-mass spectrometry: a pilot study on bronchial infections in bronchiectasis. Clin Chim Acta. 2022;526:6–13.
  • Subali AD, Wiyono L, Yusuf M, et al. The potential of volatile organic compounds-based breath analysis for COVID-19 screening: a systematic review & meta-analysis. Diagn Microbiol Infect Dis. 2022;102(2):115589.
  • Maselli JH, Sontag MK, Norris JM, et al. Risk factors for initial acquisition of Pseudomonas aeruginosa in children with cystic fibrosis identified by newborn screening. Pediatr Pulmonol. 2003;35(4):257–262.
  • Abman SH, Ogle JW, Harbeck RJ, et al. Early bacteriologic, immunologic, and clinical courses of young infants with cystic fibrosis identified by neonatal screening. J Pediatr. 1991;119(2):211–217.
  • Hoffman LR, Deziel E, D’Argenio DA, et al. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2006;103(52):19890–19895.
  • Junge S, Gorlich D, den Reijer M, et al. Factors associated with worse lung function in cystic fibrosis patients with persistent staphylococcus aureus. PLoS One. 2016;11(11):e0166220.
  • Wakeman CA, Moore JL, Noto MJ, et al. The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction. Nat Commun. 2016;7(1):11951.
  • Hogan DA, Willger SD, Dolben EL, et al. Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild-to-moderate cystic fibrosis lung disease. PLoS One. 2016;11(3):e0149998.
  • Briaud P, Camus L, Bastien S, et al. Coexistence with Pseudomonas aeruginosa alters Staphylococcus aureus transcriptome, antibiotic resistance and internalization into epithelial cells. Sci Rep. 2019;9(1):16564.
  • Hotterbeekx A, Kumar-Singh S, Goossens H, et al. In vivo and In vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol. 2017;7:106.
  • Reece E, Bettio PHA, Renwick J. Polymicrobial interactions in the cystic fibrosis airway microbiome impact the antimicrobial susceptibility of pseudomonas aeruginosa. Antibiotics (Basel). 2021;10(7). DOI:10.3390/antibiotics10070827
  • Briard B, Heddergott C, Latgé JP. Volatile compounds emitted by pseudomonas aeruginosa stimulate growth of the fungal pathogen aspergillus fumigatus. mBio. 2016;7(2):e00219.
  • Scott J, Sueiro-Olivares M, Ahmed W, et al. Pseudomonas aeruginosa-derived volatile sulfur compounds promote distal aspergillus fumigatus growth and a synergistic pathogen-pathogen interaction that increases pathogenicity in co-infection. Front Microbiol. 2019;10:2311.
  • Nazik H, Sass G, Deziel E, et al. Aspergillus is inhibited by pseudomonas aeruginosa volatiles. J Fungi (Basel). 2020;6(3). DOI:10.3390/jof6030118
  • Patil RH, Kotta-Loizou I, Palyzova A, et al. Freeing aspergillus fumigatus of polymycovirus infection renders it more resistant to competition with pseudomonas aeruginosa due to altered iron-acquiring tactics. J Fungi (Basel). 2021;7(7). DOI:10.3390/jof7070497.
  • Flume PA, Mogayzel PJ Jr., Robinson KA, et al. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med. 2009;180(9):802–808.
  • Horváth I, Barnes PJ, Loukides S, et al., A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J. 2017;49(4): 1600965. .
  • Keown K, Brown R, Doherty DF, et al. Airway inflammation and host responses in the era of CFTR modulators. Int J Mol Sci. 2020;21(17):6379.
  • Mainz JG, Arnold C, Wittstock K, et al. Ivacaftor reduces inflammatory mediators in upper airway lining fluid from cystic fibrosis patients with a G551D mutation: serial non-invasive home-based collection of upper airway lining fluid. Front Immunol. 2021;12:642180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.