323
Views
0
CrossRef citations to date
0
Altmetric
Review

Obstructive sleep apnea: personalizing CPAP alternative therapies to individual physiology

ORCID Icon, &
Pages 917-929 | Received 09 May 2022, Accepted 09 Aug 2022, Published online: 18 Aug 2022

References

  • Benjafield AV, Ayas NT, Eastwood PR, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687–698.
  • Patil SP, Ayappa IA, Caples SM, et al. Treatment of adult obstructive sleep apnea with positive airway pressure: an American academy of sleep medicine clinical practice guideline. J Clin Sleep Med. 2019;15(2):335–343.
  • Jacobowitz O, Afifi L, Penzel T, et al. Endorsement of: “treatment of adult obstructive sleep apnea with positive airway pressure: an American academy of sleep medicine clinical practice guideline” by world sleep society. Sleep Med. 2022;89:19–22.
  • Owens RL, Wilson KC, Gurubhagavatula I, et al. Philips respironics recall of positive airway pressure and noninvasive ventilation devices: a brief statement to inform response efforts and identify key steps forward. Am J Respir Crit Care Med. 2021;204(8):887–890.
  • Weaver TE, Kribbs NB, Pack AI, et al. Night-to-night variability in CPAP use over the first three months of treatment. Sleep. 1997;20(4):278–283.
  • Sullivan CE, Issa FG, Berthon-Jones M, et al. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet. 1981;1(8225):862–865.
  • Nokes B, Lin E, McGuire WC, et al. Recommended reading from University of California, San Diego Fellows. Am J Respir Crit Care Med. 2021;204(8):986–988.
  • Edwards BA, Redline S, Sands SA, et al. More than the sum of the respiratory events: personalized medicine approaches for obstructive sleep apnea. Am J Respir Crit Care Med. 2019;200(6):691–703.
  • Strohl KP, Butler JP, Malhotra A. Mechanical properties of the upper airway. Compr Physiol. 2012;2(3):1853–1872.
  • Malhotra A, Fogel RB, Edwards JK, et al. Local mechanisms drive genioglossus activation in obstructive sleep apnea. Am J Respir Crit Care Med. 2000;161(5):1746–1749.
  • Genta PR, Edwards BA, Sands SA, et al. Tube law of the pharyngeal airway in sleeping patients with obstructive sleep apnea. Sleep. 2016;39(2):337–343.
  • Malhotra A, Pillar G, Fogel RB, et al. Pharyngeal pressure and flow effects on genioglossus activation in normal subjects. Am J Respir Crit Care Med. 2002;165(1):71–77.
  • Malhotra A, Trinder J, Fogel R, et al. Postural effects on pharyngeal protective reflex mechanisms. Sleep. 2004;27(6):1105–1112.
  • Malhotra A, Huang Y, Fogel R, et al. Aging influences on pharyngeal anatomy and physiology: the predisposition to pharyngeal collapse. Am J Med. 2006;119(1):72 e79–14.
  • Malhotra A, Mesarwi O, Pepin JL, et al. Endotypes and phenotypes in obstructive sleep apnea. Curr Opin Pulm Med. 2020;26(6):609–614.
  • Mann DL, Terrill PI, Azarbarzin A, et al. Quantifying the magnitude of pharyngeal obstruction during sleep using airflow shape. Eur Respir J. 2019;54(1):1802262.
  • Sands SA, Edwards BA, Terrill PI, et al. Phenotyping pharyngeal pathophysiology using polysomnography in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2018;197(9):1187–1197.
  • Alex RM, Sofer T, Azarbarzin A, et al. Within-night repeatability and long-term consistency of sleep apnea endotypes: the multi-ethnic study of atherosclerosis and osteoporotic fractures in men study. Sleep. 2022. DOI:10.1093/sleep/zsac129.
  • Isono S, Feroah TR, Hajduk EA, et al. Interaction of cross-al area, driving pressure, and airflow of passive velopharynx. J Appl Physiol (1985). 1997;83(3):851–859.
  • Lambeth C, Kolevski B, Amis T, et al. Feedback modulation of surrounding pressure determines the onset of negative effort dependence in a collapsible tube bench model of the pharyngeal airway. J Appl Physiol (1985). 2017;123(5):1118–1125.
  • Eckert DJ, White DP, Jordan AS, et al. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med. 2013;188(8):996–1004.
  • Schwartz AR, Smith PL. CrossTalk proposal: the human upper airway does behave like a Starling resistor during sleep. J Physiol. 2013;591(9):2229–2232.
  • Smith PL, Wise RA, Gold AR, et al. Upper airway pressure-flow relationships in obstructive sleep apnea. J Appl Physiol (1985). 1988;64(2):789–795.
  • Younes M. Role of respiratory control mechanisms in the pathogenesis of obstructive sleep disorders. J Appl Physiol (1985). 2008;105(5):1389–1405.
  • Owens RL, Edwards BA, Sands SA, et al. The classical Starling resistor model often does not predict inspiratory airflow patterns in the human upper airway. J Appl Physiol (1985). 2014;116(8):1105–1112.
  • Suratt PM, Wilhoit SC, Cooper K. Induction of airway collapse with subatmospheric pressure in awake patients with sleep apnea. J Appl Physiol Respir Environ Exerc Physiol. 1984;57(1):140–146.
  • Issa FG, Sullivan CE. Upper airway closing pressures in obstructive sleep apnea. J Appl Physiol Respir Environ Exerc Physiol. 1984;57(2):520–527.
  • Owens RL, Edwards BA, Sands SA, et al. Upper airway collapsibility and patterns of flow limitation at constant end-expiratory lung volume. J Appl Physiol (1985). 2012;113(5):691–699.
  • Wellman A, Edwards BA, Sands SA, et al. A simplified method for determining phenotypic traits in patients with obstructive sleep apnea. J Appl Physiol (1985). 2013;114(7):911–922.
  • Terrill PI, Edwards BA, Nemati S, et al. Quantifying the ventilatory control contribution to sleep apnoea using polysomnography. Eur Respir J. 2015;45(2):408–418.
  • Gell LK, Vena D, Alex RM, et al. Neural ventilatory drive decline as a predominant mechanism of obstructive sleep apnoea events. Thorax. 2022;77(7):707–716.
  • Messineo L, Eckert DJ, Taranto-Montemurro L, et al. Ventilatory drive withdrawal rather than reduced genioglossus compensation as a mechanism of obstructive sleep apnea in REM sleep. Am J Respir Crit Care Med. 2022;205(2):219–232.
  • Turnbull CD, Wang SH, Manuel AR, et al. Relationships between MRI fat distributions and sleep apnea and obesity hypoventilation syndrome in very obese patients. Sleep Breath. 2018;22(3):673–681.
  • Arnardottir ES, Maislin G, Jackson N, et al. The role of obesity, different fat compartments and sleep apnea severity in circulating leptin levels: the icelandic sleep apnea cohort study. Int J Obes (Lond). 2013;37(6):835–842.
  • Jordan AS, White DP, Owens RL, et al. The effect of increased genioglossus activity and end-expiratory lung volume on pharyngeal collapse. J Appl Physiol (1985). 2010;109(2):469–475.
  • Wang SH, Keenan BT, Wiemken A, et al. Effect of weight loss on upper airway anatomy and the apnea-hypopnea index. the importance of tongue fat. Am J Respir Crit Care Med. 2020;201(6):718–727.
  • Cai Y, Goldberg AN, Chang JL. The nose and nasal breathing in sleep apnea. Otolaryngol Clin North Am. 2020;53(3):385–395.
  • Lofaso F, Coste A, d’Ortho MP, et al. Nasal obstruction as a risk factor for sleep apnoea syndrome. Eur Respir J. 2000;16(4):639–643.
  • Lee SH, Choi JH, Shin C, et al. How does open-mouth breathing influence upper airway anatomy? Laryngoscope. 2007;117(6):1102–1106.
  • Sss N, Tam WWS, Lee RWW, et al. Effect of weight loss and continuous positive airway pressure on obstructive sleep apnea and metabolic profile stratified by craniofacial phenotype: a randomized clinical trial. Am J Respir Crit Care Med. 2022;205(6):711–720.
  • Kairaitis K, Amatoury J, Jordan A. Muscling up pharyngeal airflow. Chest. 2021;159(3):912–914.
  • Tsai M, Khayat R. Sleep apnea in heart failure. Curr Treat Options Cardiovasc Med. 2018;20(4):33.
  • Khayat RN, Javaheri S, Porter K, et al. In-hospital management of sleep apnea during heart failure hospitalization: a randomized controlled trial. J Card Fail. 2020;26(8):705–712.
  • Stanchina ML, Malhotra A, Fogel RB, et al. Genioglossus muscle responsiveness to chemical and mechanical stimuli during non-rapid eye movement sleep. Am J Respir Crit Care Med. 2002;165(7):945–949.
  • Berry RB, White DP, Roper J, et al. Awake negative pressure reflex response of the genioglossus in OSA patients and normal subjects. J Appl Physiol (1985). 2003;94(5):1875–1882.
  • Stanchina ML, Malhotra A, Fogel RB, et al. The influence of lung volume on pharyngeal mechanics, collapsibility, and genioglossus muscle activation during sleep. Sleep. 2003;26(7):851–856.
  • Gastaut H, Duron B, Tassinari CA, et al. Mechanism of the respiratory pauses accompanying slumber in the Pickwickian syndrome. Act Nerv Super (Praha). 1969;11(3):2095.
  • Remmers JE, deGroot WJ, Sauerland EK, et al. Pathogenesis of upper airway occlusion during sleep. J Appl Physiol Respir Environ Exerc Physiol. 1978;44(6):931–938.
  • Sands SA, Eckert DJ, Jordan AS, et al. Enhanced upper-airway muscle responsiveness is a distinct feature of overweight/obese individuals without sleep apnea. Am J Respir Crit Care Med. 2014;190(8):930–937.
  • Taranto-Montemurro L, Messineo L, Azarbarzin A, et al., Effects of the combination of atomoxetine and oxybutynin on OSA endotypic traits. Chest. 2020;157(6):1626–1636.
  • Maghsoudipour M, Nokes B, Bosompra NO, et al., A pilot randomized controlled trial of effect of genioglossus muscle strengthening on obstructive sleep apnea outcomes. J Clin Med. 2021;10(19):4554.
  • Dempsey JA. Central sleep apnea: misunderstood and mistreated! F1000Res. 2019;8:981.
  • Dempsey JA, Smith CA. Update on chemoreception: influence on cardiorespiratory regulation and pathophysiology. Clin Chest Med. 2019;40(2):269–283.
  • Smith JC, Ellenberger HH, Ballanyi K, et al. Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science. 1991;254(5032):726–729.
  • Dempsey JA, Powell FL, Bisgard GE, et al. Role of chemoreception in cardiorespiratory acclimatization to, and deacclimatization from, hypoxia. J Appl Physiol (1985). 2014;116(7):858–866.
  • Zera T, Moraes DJA, da Silva MP, et al. The logic of carotid body connectivity to the brain. Physiology (Bethesda). 2019;34(4):264–282.
  • Barbara Morgan JD. Chemoreception: pathways, plasticity, and pathophysiology. Control of Breathing During Sleep: From Bench to Bedside 1st ed. Boca Raton, FL: Taylor Francis. 2022. ISBN: 9780367430115 (In press)
  • Edwards BA, Sands SA, Skuza EM, et al. Increased peripheral chemosensitivity via dopaminergic manipulation promotes respiratory instability in lambs. Respir Physiol Neurobiol. 2008;164(3):419–428.
  • Giannoni A, Emdin M, Passino C. Cheyne-stokes respiration, chemoreflex, and ticagrelor-related dyspnea. N Engl J Med. 2016;375(10):1004–1006.
  • Bochorishvili G, Stornetta RL, Coates MB, et al. Pre-Botzinger complex receives glutamatergic innervation from galaninergic and other retrotrapezoid nucleus neurons. J Comp Neurol. 2012;520(5):1047–1061.
  • Guyenet PG, Mulkey DK, Stornetta RL, et al. Regulation of ventral surface chemoreceptors by the central respiratory pattern generator. J Neurosci. 2005;25(39):8938–8947.
  • Burke PG, Kanbar R, Basting TM, et al. State-dependent control of breathing by the retrotrapezoid nucleus. J Physiol. 2015;593(13):2909–2926.
  • Li P, Janczewski WA, Yackle K, et al. The peptidergic control circuit for sighing. Nature. 2016;530(7590):293–297.
  • Guyenet PG, Stornetta RL, Bayliss DA. Central respiratory chemoreception. J Comp Neurol. 2010;518(19):3883–3906.
  • Guyenet PG, Stornetta RL, Bayliss DA. Retrotrapezoid nucleus and central chemoreception. J Physiol. 2008;586(8):2043–2048.
  • Smith CA, Forster HV, Blain GM, et al. An interdependent model of central/peripheral chemoreception: evidence and implications for ventilatory control. Respir Physiol Neurobiol. 2010;173(3):288–297.
  • Smith CA, Blain GM, Henderson KS, et al. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2: role of carotid body CO2. J Physiol. 2015;593(18):4225–4243.
  • Guyenet PG. Regulation of breathing and autonomic outflows by chemoreceptors. Compr Physiol. 2014;4(4):1511–1562.
  • Malhotra A, Orr JE, Owens RL. On the cutting edge of obstructive sleep apnoea: where next? Lancet Respir Med. 2015;3(5):397–403.
  • Dempsey JA, Smith CA, Przybylowski T, et al. The ventilatory responsiveness to CO(2) below eupnoea as a determinant of ventilatory stability in sleep. J Physiol. 2004;560(Pt 1):1–11.
  • Schmickl CN, Landry S, Orr JE, et al. Effects of Acetazolamide on control of breathing in sleep apnea patients: mechanistic insights using meta-analyses and physiological model simulations. Physiol Rep. 2021;9(20):e15071.
  • Deacon-Diaz N, Malhotra A. Inherent vs. induced loop gain abnormalities in obstructive sleep apnea. Front Neurol. 2018;9:896.
  • Messineo L, Taranto-Montemurro L, Azarbarzin A, et al. Loop gain in REM versus non-REM sleep using CPAP manipulation: a pilot study. Respirology. 2019;24(8):805–808.
  • Landry SA, Andara C, Terrill PI, et al. Ventilatory control sensitivity in patients with obstructive sleep apnea is sleep stage dependent. Sleep. 2018;41(5). DOI:10.1093/sleep/zsy040.
  • Eckert DJ, Younes MK. Arousal from sleep: implications for obstructive sleep apnea pathogenesis and treatment. J Appl Physiol (1985). 2014;116(3):302–313.
  • Loewen A, Ostrowski M, Laprairie J, et al. Determinants of ventilatory instability in obstructive sleep apnea: inherent or acquired? Sleep. 2009;32(10):1355–1365.
  • Kaur S, Saper CB. Neural circuitry underlying waking up to hypercapnia. Front Neurosci. 2019;13:401.
  • Gleeson K, Zwillich CW, White DP. The influence of increasing ventilatory effort on arousal from sleep. Am Rev Respir Dis. 1990;142(2):295–300.
  • Younes M. Role of arousals in the pathogenesis of obstructive sleep apnea. Am J Respir Crit Care Med. 2004;169(5):623–633.
  • Douglas NJ, Jan MA, Yildirim N, et al. Effect of posture and breathing route on genioglossal electromyogram activity in normal subjects and in patients with the sleep apnea/hypopnea syndrome. Am Rev Respir Dis. 1993;148(5):1341–1345.
  • Omobomi O, Quan SF. Positional therapy in the management of positional obstructive sleep apnea-a review of the current literature. Sleep Breath. 2018;22(2):297–304.
  • Mickelson SA. Oral appliances for snoring and obstructive sleep apnea. Otolaryngol Clin North Am. 2020;53(3):397–407.
  • Ramar K, Dort LC, Katz SG, et al. Clinical practice guideline for the treatment of obstructive sleep apnea and snoring with oral appliance therapy: an update for 2015. J Clin Sleep Med. 2015;11(7):773–827.
  • Chan AS, Sutherland K, Schwab RJ, et al. The effect of mandibular advancement on upper airway structure in obstructive sleep apnoea. Thorax. 2010;65(8):726–732.
  • Petri N, Svanholt P, Solow B, et al. Mandibular advancement appliance for obstructive sleep apnoea: results of a randomised placebo controlled trial using parallel group design. J Sleep Res. 2008;17(2):221–229.
  • Vena D, Azarbarzin A, Marques M, et al. Predicting sleep apnea responses to oral appliance therapy using polysomnographic airflow. Sleep. 2020; 43(7). DOI: 10.1093/sleep/zsaa004
  • Camacho M, Certal V, Capasso R. Comprehensive review of surgeries for obstructive sleep apnea syndrome. Braz J Otorhinolaryngol. 2013;79(6):780–788.
  • Liu SY, Awad M, Riley R, et al. The role of the revised stanford protocol in today’s precision medicine. Sleep Med Clin. 2019;14(1):99–107.
  • MacKay S, Carney AS, Catcheside PG, et al., Effect of multilevel upper airway surgery vs medical management on the apnea-hypopnea index and patient-reported daytime sleepiness among patients with moderate or severe obstructive sleep apnea: the sams randomized clinical trial. JAMA. 2020;324(12):1168.
  • Mansukhani MP, Olson EJ, Caples SM. Upper airway surgery for obstructive sleep apnea. JAMA. 2020;324(12):1161–1162.
  • Awad M, Capasso R. Skeletal surgery for obstructive sleep apnea. Otolaryngol Clin North Am. 2020;53(3):459–468.
  • Zaghi S, Holty JE, Certal V, et al. Maxillomandibular advancement for treatment of obstructive sleep apnea: a meta-analysis. JAMA Otolaryngol Head Neck Surg. 2016;142(1):58–66.
  • Riley R, Guilleminault C, Powell N, et al. Mandibular osteotomy and hyoid bone advancement for obstructive sleep apnea: a case report. Sleep. 1984;7(1):79–82.
  • Puccia R, Woodson BT. Palatopharyngoplasty and palatal anatomy and phenotypes for treatment of sleep apnea in the twenty-first century. Otolaryngol Clin North Am. 2020;53(3):421–429.
  • Choi JH, Cho SH, Kim SN, et al. Predicting outcomes after uvulopalatopharyngoplasty for adult obstructive sleep apnea: a meta-analysis. Otolaryngol Head Neck Surg. 2016;155(6):904–913.
  • Khan A, Ramar K, Maddirala S, et al. Uvulopalatopharyngoplasty in the management of obstructive sleep apnea: the mayo clinic experience. Mayo Clin Proc. 2009;84(9):795–800.
  • Varendh M, Berg S, Andersson M. Long-term follow-up of patients operated with Uvulopalatopharyngoplasty from 1985 to 1991. Respir Med. 2012;106(12):1788–1793.
  • Strollo PJ SRJ Jr., Maurer JT, Maurer JT, et al., Upper-airway stimulation for obstructive sleep apnea. N Engl J Med. 2014;370(2):139–149.
  • Eastwood PR, Barnes M, MacKay SG, et al. Bilateral hypoglossal nerve stimulation for treatment of adult obstructive sleep apnoea. Eur Respir J. 2020;55(1):1901320.
  • Withrow K, Evans S, Harwick J, et al. Upper airway stimulation response in older adults with moderate to severe obstructive sleep apnea. Otolaryngol Head Neck Surg. 2019;161(4):714–719.
  • Thaler E, Schwab R, Maurer J, et al. Results of the ADHERE upper airway stimulation registry and predictors of therapy efficacy. Laryngoscope. 2020;130(5):1333–1338.
  • Lewis R, Petelle B, Campbell MC, et al. Implantation of the nyxoah bilateral hypoglossal nerve stimulator for obstructive sleep apnea. Laryngoscope Investig Otolaryngol. 2019;4(6):703–707.
  • Sommer JU, Hormann K. Innovative surgery for obstructive sleep apnea: nerve stimulator. Adv Otorhinolaryngol. 2017;80:116–124.
  • de Beeck S O, Wellman A, Dieltjens M, et al. Endotypic mechanisms of successful hypoglossal nerve stimulation for obstructive sleep apnea. Am J Respir Crit Care Med. 2021;203(6):746–755.
  • Heiser C, Steffen A, Boon M, et al. Post-approval upper airway stimulation predictors of treatment effectiveness in the ADHERE registry. Eur Respir J. 2019;53(1):1801405.
  • Li Y, Ye J, Han D, et al. The effect of upper airway surgery on loop gain in obstructive sleep apnea. J Clin Sleep Med. 2019;15(6):907–913.
  • Joosten SA, Tan M, Wong AM, et al. A randomized controlled trial of oxygen therapy for patients who do not respond to upper airway surgery for obstructive sleep apnea. J Clin Sleep Med. 2021;17(3):445–452.
  • Puhan MA, Suarez A, Lo Cascio C, et al. Didgeridoo playing as alternative treatment for obstructive sleep apnoea syndrome: randomised controlled trial. BMJ. 2006;332(7536):266–270.
  • Baptista P, Martínez Ruiz de Apodaca P, Marina C, et al. Daytime neuromuscular electrical therapy of tongue muscles in improving snoring in individuals with primary snoring and mild obstructive sleep apnea. J Clin Med. 2021;10(9):1883.
  • Kent DT, Zealear D, Schwartz AR. Ansa cervicalis stimulation: a new direction in neurostimulation for OSA. Chest. 2021;159(3):1212–1221.
  • Taranto-Montemurro L, Messineo L, Wellman A. Targeting endotypic traits with medications for the pharmacological treatment of obstructive sleep apnea. A review of the current literature. J Clin Med. 2019;8(11):1846.
  • Schmickl CN, Li Y, Orr JE, et al. Effect of venlafaxine on apnea-hypopnea index in patients with sleep apnea: a randomized, double-blind crossover study. Chest. 2020;158(2):765–775.
  • Taranto-Montemurro L, Messineo L, Sands SA, et al. The combination of atomoxetine and oxybutynin greatly reduces obstructive sleep apnea severity. A randomized, placebo-controlled, double-blind crossover trial. Am J Respir Crit Care Med. 2019;199(10):1267–1276.
  • Horner RL, Grace KP, Wellman A. A resource of potential drug targets and strategic decision-making for obstructive sleep apnoea pharmacotherapy. Respirology. 2017;22(5):861–873.
  • Gaisl T, Turnbull CD, Weimann G, et al. BAY 2253651 for the treatment of obstructive sleep apnoea: a multicentre, double-blind, randomised controlled trial (SANDMAN). Eur Respir J. 2021;58(5):2101937.
  • Wellman A, Jordan AS, Malhotra A, et al. Ventilatory control and airway anatomy in obstructive sleep apnea. Am J Respir Crit Care Med. 2004;170(11):1225–1232.
  • Orr JE, Sands SA, Edwards BA, et al. Measuring loop gain via home sleep testing in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2018;197(10):1353–1355.
  • Schmickl CN, Landry SA, Orr JE, et al. Acetazolamide for OSA and central sleep apnea: a comprehensive systematic review and meta-analysis. Chest. 2020;158(6):2632–2645.
  • Eckert DJ, Owens RL, Kehlmann GB, et al. Eszopiclone increases the respiratory arousal threshold and lowers the apnoea/hypopnoea index in obstructive sleep apnoea patients with a low arousal threshold. Clin Sci (Lond). 2011;120(12):505–514.
  • Amatoury J, Azarbarzin A, Younes M, et al. Arousal intensity is a distinct pathophysiological trait in obstructive sleep apnea. Sleep. 2016;39(12):2091–2100.
  • Saboisky J, Eckert D, Malhotra A. Stable breathing through deeper sleeping. Thorax. 2010;65(2):95–96.
  • Messineo L, Eckert DJ, Lim R, et al. Zolpidem increases sleep efficiency and the respiratory arousal threshold without changing sleep apnoea severity and pharyngeal muscle activity. J Physiol. 2020;598(20):4681–4692.
  • Messineo L, Carter SG, Taranto-Montemurro L, et al. Addition of zolpidem to combination therapy with atomoxetine-oxybutynin increases sleep efficiency and the respiratory arousal threshold in obstructive sleep apnoea: a randomized trial. Respirology. 2021;26(9):878–886.
  • Schmickl CN, Lettieri CJ, Orr JE, et al. The arousal threshold as a drug target to improve continuous positive airway pressure adherence: secondary analysis of a randomized trial. Am J Respir Crit Care Med. 2020;202(11):1592–1595.
  • Edwards BA, Sands SA, Owens RL, et al. The combination of supplemental oxygen and a hypnotic markedly improves obstructive sleep apnea in patients with a mild to moderate upper airway collapsibility. Sleep. 2016;39(11):1973–1983.
  • Messineo L, Magri R, Corda L, et al. Phenotyping-based treatment improves obstructive sleep apnea symptoms and severity: a pilot study. Sleep Breath. 2017;21(4):861–868.
  • Malhotra A, Ayappa I, Ayas N, et al. Metrics of sleep apnea severity: beyond the apnea-hypopnea index. Sleep. 2021;44(7). DOI:10.1093/sleep/zsab030.
  • Kribbs NB, Pack AI, Kline LR, et al. Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea. Am Rev Respir Dis. 1993;147(4):887–895.
  • Malhotra A, Butler J, Wellman A. The pharyngeal airway is bigger really better? Chest. 2012;141(6):1372–1375.
  • Penner CG, Gerardy B, Ryan R, et al. The odds ratio product (an objective sleep depth measure): normal values, repeatability, and change with CPAP in patients with OSA. J Clin Sleep Med. 2019;15(8):1155–1163.
  • Azarbarzin A, Sands SA, Stone KL, et al. The hypoxic burden of sleep apnoea predicts cardiovascular disease-related mortality: the osteoporotic fractures in men study and the sleep heart health study. Eur Heart J. 2019;40(14):1149–1157.
  • Azarbarzin A, Sands SA, Taranto-Montemurro L, et al. The sleep apnea-specific hypoxic burden predicts incident heart failure. Chest. 2020;158(2):739–750.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.