285
Views
0
CrossRef citations to date
0
Altmetric
Review

Impact of aging on immune function in the pathogenesis of pulmonary diseases: potential for therapeutic targets

, , & ORCID Icon
Pages 351-364 | Received 06 Oct 2022, Accepted 17 Apr 2023, Published online: 26 Apr 2023

References

  • Hernandez-Gonzalez F. Chapter 3 - Lung aging and senescence in health and disease, in cellular senescence in disease. M. Serrano and D. Muñoz-Espín, et al., Editors. Academic Press; 2022. p. 61–80.
  • Schneider JL, Rowe JH, Garcia-de-Alba C, et al. The aging lung: physiology, disease, and immunity. Cell. 2021;184(8):1990–2019. DOI:10.1016/j.cell.2021.03.005
  • López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153(6):1194–1217. DOI:10.1016/j.cell.2013.05.039
  • Budinger GRS, Kohanski RA, Gan W, et al. The intersection of aging biology and the pathobiology of lung diseases: a Joint NHLBI/NIA WOrkshop. J Gerontol A Biol Sci Med Sci. 2017;72(11):1492–1500. DOI:10.1093/gerona/glx090
  • Brandenberger C, Mühlfeld C. Mechanisms of lung aging. Cell Tissue Res. 2017;367(3):469–480.
  • Weyand CM, Goronzy JJ. Aging of the immune system. mechanisms and therapeutic targets. Ann Am Thorac Soc. 2016;13(Suppl 5):S422–s428.
  • Kolb JP, Oguin TH, Oberst A, et al. Programmed cell death and inflammation: winter is coming. Trends Immunol. 2017;38(10):705–718. DOI:10.1016/j.it.2017.06.009
  • Weiskopf D, Weinberger B, Grubeck-Loebenstein B. The aging of the immune system. Transplant Int. 2009;22(11):1041–1050.
  • Lowery EM, Lowery E, Kuhlmann E, et al. The aging lung. Clin Interv Aging. 2013;8:1489–1496.
  • Gouin JP, Hantsoo L, Kiecolt-Glaser JK. Immune dysregulation and chronic stress among older adults: a review. Neuroimmunomodulation. 2008;15(4–6):251–259.
  • Halawa S, Pullamsetti SS, Bangham CRM, et al. Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: a global perspective. Nat Rev Cardiol. 2022;19(5):314–331. DOI:10.1038/s41569-021-00640-2
  • Hajishengallis G. Too old to fight? Aging and its toll on innate immunity. Mol Oral Microbiol. 2010;25(1):25–37.
  • Meyer KC. The role of immunity in susceptibility to respiratory infection in the aging lung. Respir Physiol. 2001;128(1):23–31.
  • Iwasaki A, Foxman EF, Molony RD. Early local immune defences in the respiratory tract. Nat Rev Immunol. 2017;17(1):7–20.
  • Lloyd CM, Marsland BJ. Lung Homeostasis: influence of age, microbes, and the immune system. Immunity. 2017;46(4):549–561.
  • Gibbings SL, Thomas SM, Atif SM, et al. Three unique interstitial macrophages in the murine lung at steady State. Am J Respir Cell Mol Biol. 2017;57(1):66–76. DOI:10.1165/rcmb.2016-0361OC
  • Nikolich-Žugich J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol. 2018;19(1):10–19.
  • Boe DM, Boule LA, Kovacs EJ. Innate immune responses in the ageing lung. Clin Exp Immunol. 2017;187(1):16–25.
  • Radicioni G, Cao R, Carpenter J, et al. The innate immune properties of airway mucosal surfaces are regulated by dynamic interactions between mucins and interacting proteins: the mucin interactome. Mucosal Immunol. 2016;9(6):1442–1454. DOI:10.1038/mi.2016.27
  • Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front Immunol. 2020;11:1722.
  • Gollwitzer ES, Saglani S, Trompette A, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014;20(6):642–647. DOI:10.1038/nm.3568
  • Wang J, Li F, Sun R, et al. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages. Nat Commun. 2013;4:2106.
  • Montgomery RR, Shaw AC. Paradoxical changes in innate immunity in aging: recent progress and new directions. J Leukocyte Biol. 2015;98(6):937–943.
  • Quinn KM, Fox A, Harland KL, et al. Age-Related Decline in Primary CD8(+) T Cell Responses is Associated with the Development of Senescence in Virtual Memory CD8(+) T Cells. Cell Rep. 2018;23(12):3512–3524. DOI:10.1016/j.celrep.2018.05.057.
  • Hinojosa CA, Mgbemena V, Van Roekel S, et al. Enteric-delivered rapamycin enhances resistance of aged mice to pneumococcal pneumonia through reduced cellular senescence. Exp Gerontol. 2012;47(12):958–965. DOI:10.1016/j.exger.2012.08.013
  • Shivshankar P, Boyd AR, Le Saux CJ, et al. Cellular senescence increases expression of bacterial ligands in the lungs and is positively correlated with increased susceptibility to pneumococcal pneumonia. Aging Cell. 2011;10(5):798–806. doi:10.1111/j.1474-9726.2011.00720.x.
  • Henson SM, Lanna A, Riddell NE, et al. P38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells. J Clin Invest. 2014;124(9):4004–4016. DOI:10.1172/JCI75051
  • Kerstjens HA, Rijcken B, Schouten JP, et al. Decline of FEV1 by age and smoking status: facts, figures, and fallacies. Thorax. 1997;52(9):820–827. DOI:10.1136/thx.52.9.820
  • Kirsten M, et al. The effect of age on lung epithelial barrier function. Eur Respir J. 2018;52(suppl 62):OA2124.
  • Stout-Delgado HW, Vaughan SE, Shirali AC, et al. Impaired NLRP3 inflammasome function in elderly mice during influenza infection is rescued by treatment with nigericin. J Immunol. 2012;188(6):2815–2824. DOI:10.4049/jimmunol.1103051
  • Kovacs EJ, Palmer JL, Fortin CF, et al. Aging and innate immunity in the mouse: impact of intrinsic and extrinsic factors. Trends Immunol. 2009;30(7):319–324. DOI:10.1016/j.it.2009.03.012
  • Murciano C, Yáñez A, O’Connor JE, et al. Influence of aging on murine neutrophil and macrophage function against Candida albicans. FEMS Immunol Med Microbiol. 2008;53(2):214–221. DOI:10.1111/j.1574-695X.2008.00418.x
  • Fortin CF, McDonald PP, Lesur O, et al. Aging and neutrophils: there is still much to do. Rejuvenation Res. 2008;11(5):873–882. DOI:10.1089/rej.2008.0750
  • Simell B, Vuorela A, Ekström N, et al. Aging reduces the functionality of anti-pneumococcal antibodies and the killing of Streptococcus pneumoniae by neutrophil phagocytosis. Vaccine. 2011;29(10):1929–1934. DOI:10.1016/j.vaccine.2010.12.121
  • Gomez CR, Boehmer ED, Kovacs EJ. The aging innate immune system. Curr Opin Immunol. 2005;17(5):457–462.
  • Bowdish DME. The aging lung: is lung health good health for older adults? Chest. 2019;155(2):391–400.
  • Chiu C, Openshaw PJ. Antiviral B cell and T cell immunity in the lungs. Nat Immunol. 2015;16(1):18–26.
  • Haynes L, Swain SL. Why aging T cells fail: implications for vaccination. Immunity. 2006;24(6):663–666.
  • Toapanta FR, Ross TM. Impaired immune responses in the lungs of aged mice following influenza infection. Respir Res. 2009;10(1):112.
  • Lee N, Shin MS, Kang I. T-cell biology in aging, with a focus on lung disease. J Gerontol A Biol Sci Med Sci. 2012;67(3):254–263.
  • Diller ML, Kudchadkar RR, Delman KA, et al. Balancing inflammation: the link between Th17 and Regulatory T Cells. Mediators Inflamm. 2016;2016:6309219.
  • Huang C, Li F, Wang J, et al. Innate-like lymphocytes and innate lymphoid cells in asthma. Clin Rev Allergy Immunol. 2020;59(3):359–370. DOI:10.1007/s12016-019-08773-6
  • Vernot JP. Senescence-associated pro-inflammatory cytokines and tumor cell plasticity. Front Mol Biosci. 2020;7:63.
  • Jackaman C, Tomay F, Duong L, et al. Aging and cancer: the role of macrophages and neutrophils. Ageing Res Rev. 2017;36:105–116.
  • Wang ZN, Su R-N, Yang B-Y, et al. Potential role of cellular senescence in asthma. Front Cell Dev Biol. 2020;8:59.
  • Duong L, Radley HG, Lee B, et al. Macrophage function in the elderly and impact on injury repair and cancer. Immun Ageing. 2021;18(1):4. DOI:10.1186/s12979-021-00215-2
  • Parimon T, Hohmann MS, Yao C. Cellular senescence: pathogenic mechanisms in lung fibrosis. Int J Mol Sci. 2021;22(12):6214.
  • Cho MH, Hobbs BD, Silverman EK. Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. Lancet Respir Med. 2022;10(5):485–496.
  • Sharma G, Hanania NA, Shim YM. The aging immune system and its relationship to the development of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6(7):573–580.
  • Halper-Stromberg E, Yun JH, Parker MM, et al. Systemic markers of adaptive and innate immunity are associated with chronic obstructive pulmonary disease severity and spirometric disease progression. Am J Respir Cell Mol Biol. 2018;58(4):500–509. DOI:10.1165/rcmb.2017-0373OC
  • Silver JS, Kearley J, Copenhaver AM, et al. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat Immunol. 2016;17(6):626–635. doi:10.1038/ni.3443.
  • Safiri S, Carson-Chahhoud K, Noori M, et al. Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990-2019: results from the Global Burden of Disease Study 2019. BMJ. 2022;378:e069679.
  • MacNee W. Pathology, pathogenesis, and pathophysiology. BMJ. 2006;332(7551):1202.
  • Fletcher C, Peto R. The natural history of chronic airflow obstruction. Br Med J. 1977;1(6077):1645–1648.
  • MacNee W. Is chronic obstructive pulmonary disease an accelerated aging disease? Ann Am Thorac Soc. 2016;13(Suppl 5):S429–s437.
  • Ito K, Barnes PJ. COPD as a disease of accelerated lung aging. Chest. 2009;135(1):173–180.
  • Divo MJ, Celli BR, Poblador-Plou B, et al. Chronic Obstructive Pulmonary Disease (COPD) as a disease of early aging: evidence from the EpiChron Cohort. PLoS ONE. 2018;13(2):e0193143. DOI:10.1371/journal.pone.0193143
  • Behrendt CE. Mild and moderate-to-severe COPD in nonsmokers: distinct demographic profiles. Chest. 2005;128(3):1239–1244.
  • Buist AS, McBurnie MA, Vollmer WM, et al. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet. 2007;370(9589):741–750. DOI:10.1016/S0140-6736(07)61377-4
  • Zhou Y, Wang C, Yao W, et al. COPD in Chinese nonsmokers. Eur Respir J. 2009;33(3):509–518. DOI:10.1183/09031936.00084408
  • Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med. 2008;359(22):2355–2365.
  • Mercado N, Ito K, Barnes PJ. Accelerated ageing of the lung in COPD: new concepts. Thorax. 2015;70(5):482–489.
  • Pawelec G. Hallmarks of human “immunosenescence”: adaptation or dysregulation? Immun Ageing. 2012;9(1):15.
  • Macallan DC, Wallace DL, Zhang Y, et al. B-cell kinetics in humans: rapid turnover of peripheral blood memory cells. Blood. 2005;105(9):3633–3640. DOI:10.1182/blood-2004-09-3740
  • Caramori G, Casolari P, Barczyk A, et al. COPD immunopathology. Semin Immunopathol. 2016;38(4):497–515. DOI:10.1007/s00281-016-0561-5
  • Fragkou PC, Moschopoulos CD, Reiter R, et al. Host immune responses and possible therapeutic targets for viral respiratory tract infections in susceptible populations: a narrative review. Clin Microbiol Infect. 2022;28(10):1328–1334. DOI:10.1016/j.cmi.2022.03.010
  • Birch J, Anderson RK, Correia-Melo C, et al. DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2015;309(10):L1124–1137. DOI:10.1152/ajplung.00293.2015
  • Simone R, Zicca A, Saverino D. The frequency of regulatory CD3+CD8+CD28- CD25+ T lymphocytes in human peripheral blood increases with age. J Leukocyte Biol. 2008;84(6):1454–1461.
  • Caramori G, Adcock IM, Casolari P, et al. Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer. Thorax. 2011;66(6):521–527. DOI:10.1136/thx.2010.156448
  • Ahmad T, Sundar IK, Tormos AM, et al. Shelterin telomere protection protein 1 reduction causes telomere attrition and cellular senescence via sirtuin 1 deacetylase in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2017;56(1):38–49. DOI:10.1165/rcmb.2016-0198OC
  • Yao H, Chung S, Hwang J-W, et al. SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest. 2012;122(6):2032–2045. DOI:10.1172/JCI60132
  • Rahman I, Kinnula VL, Gorbunova V, et al. SIRT1 as a therapeutic target in inflammaging of the pulmonary disease. Prev Med. 2012;54(Suppl):S20–8. doi:10.1016/j.ypmed.2011.11.014.
  • Rashid K, Sundar IK, Gerloff J, et al. Lung cellular senescence is independent of aging in a mouse model of COPD/emphysema. Sci Rep. 2018;8(1):9023. DOI:10.1038/s41598-018-27209-3
  • Sundar IK, Rashid K, Gerloff J, et al. Genetic ablation of histone deacetylase 2 leads to lung cellular senescence and lymphoid follicle formation in COPD/emphysema. Faseb J. 2018;32(9):4955–4971. DOI:10.1096/fj.201701518R
  • Fernandes JR, Pinto TNC, Arruda LB, et al. Age-associated phenotypic imbalance in TCD4 and TCD8 cell subsets: comparison between healthy aged, smokers, COPD patients and young adults. Immun Ageing. 2022;19(1):9. DOI:10.1186/s12979-022-00267-y
  • Hernández Cordero AI, Yang CX, Yang J, et al. Airway aging and methylation disruptions in HIV-associated chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2022;206(2):150–160. DOI:10.1164/rccm.202106-1440OC
  • Baker JR, Donnelly LE, Barnes PJ. Senotherapy: a New Horizon for COPD Therapy. Chest. 2020;158(2):562–570.
  • Houssaini A, Breau M, Kebe K, et al. mTOR pathway activation drives lung cell senescence and emphysema. JCI Insight. 2018;3(3). DOI:10.1172/jci.insight.93203.
  • Sehgal M, Jakhete SM, Manekar AG, et al. Specific epigenetic regulators serve as potential therapeutic targets in idiopathic pulmonary fibrosis. Heliyon. 2022;8(8):e09773. DOI:10.1016/j.heliyon.2022.e09773
  • Chung JH, Landeras L. Probable UIP: what is the evidence that compels this classification and how is it different from the indeterminate category? Semin Roentgenol. 2019;54(1):15–20.
  • Noble PW, Barkauskas CE, Jiang D. Pulmonary fibrosis: patterns and perpetrators. J Clin Invest. 2012;122(8):2756–2762.
  • Cho SJ, Stout-Delgado HW. Aging and Lung Disease. Annu Rev Physiol. 2020;82(1):433–459.
  • Olson AL, Gifford AH, Inase N, et al. The epidemiology of idiopathic pulmonary fibrosis and interstitial lung diseases at risk of a progressive-fibrosing phenotype. Eur Respir Rev. 2018;27(150).
  • TE K Jr, Bradford WZ, Castro-Bernardini S, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–2092. DOI:10.1056/NEJMoa1402582
  • Lederer DJ, Martinez FJ, Longo DL. Idiopathic Pulmonary Fibrosis. N Engl J Med. 2018;378(19):1811–1823.
  • Childs BG, Durik M, Baker DJ, et al. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21(12):1424–1435. DOI:10.1038/nm.4000
  • Panda A, Qian F, Mohanty S, et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol. 2010;184(5):2518–2527. DOI:10.4049/jimmunol.0901022
  • O’Dwyer DN, Ashley SL, Gurczynski SJ, et al. Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199(9):1127–1138. DOI:10.1164/rccm.201809-1650OC
  • Yanai H, Shteinberg A, Porat Z, et al. Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients. Aging (Albany NY). 2015;7(9):664–672. DOI:10.18632/aging.100807
  • Yang KE, Kwon J, Rhim J-H, et al. Differential expression of extracellular matrix proteins in senescent and young human fibroblasts: a comparative proteomics and microarray study. Mol Cells. 2011;32(1):99–106. DOI:10.1007/s10059-011-0064-0
  • Angelidis I, Simon LM, Fernandez IE, et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun. 2019;10(1):963. doi:10.1038/s41467-019-08831-9.
  • Liu Y, Li Z, Xiao H, et al. USP13 deficiency impairs autophagy and facilitates age-related lung fibrosis. Am J Respir Cell Mol Biol. 2023;68(1):49–61. DOI:10.1165/rcmb.2022-0002OC
  • Calhoun C, Shivshankar P, Saker M, et al. Senescent cells contribute to the physiological remodeling of aged lungs. J Gerontol A Biol Sci Med Sci. 2016;71(2):153–160. DOI:10.1093/gerona/glu241
  • Casaluce F, Sgambato A, Maione P, et al. Lung cancer, elderly and immune checkpoint inhibitors. J Thorac Dis. 2018;10(Suppl 13):S1474–1481. DOI:10.21037/jtd.2018.05.90
  • Schabath MB, Cote ML. Cancer progress and priorities: lung cancer. Cancer Epidemiol Biomarkers Prev. 2019;28(10):1563–1579.
  • Weiss SA, Han J, Darvishian F, et al. Impact of aging on host immune response and survival in melanoma: an analysis of 3 patient cohorts. J Transl Med. 2016;14(1):299. DOI:10.1186/s12967-016-1026-2
  • van den Berge M, ten Hacken NHT, van der Wiel E, et al. Treatment of the bronchial tree from beginning to end: targeting small airway inflammation in asthma. Allergy. 2013;68(1):16–26. DOI:10.1111/all.12062
  • van den Berge M, ten Hacken NHT, Cohen J, et al. Small airway disease in asthma and COPD: clinical implications. Chest. 2011;139(2):412–423. DOI:10.1378/chest.10-1210
  • Mathur SK, Nyenhuis SM. Changes in immune function in asthma in the elderly. Aging Health. 2009;5(4):551–559.
  • Holgate ST, Wenzel S, Postma DS, et al. Asthma. Nat Rev Dis Primers. 2015;1(1):15025. DOI:10.1038/nrdp.2015.25
  • Conde E, Bertrand R, Balbino B, et al. Dual vaccination against IL-4 and IL-13 protects against chronic allergic asthma in mice. Nat Commun. 2021;12(1):2574. DOI:10.1038/s41467-021-22834-5
  • Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16(1):45–56.
  • Liu X, Netto KG, Sokulsky LA, et al. Single-cell RNA transcriptomic analysis identifies Creb5 and CD11b-DCs as regulator of asthma exacerbations. Mucosal Immunol. 2022;15(6):1363–1374. DOI:10.1038/s41385-022-00556-1
  • Wark PA, Johnston SL, Bucchieri F, et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med. 2005;201(6):937–947. DOI:10.1084/jem.20041901
  • Sansoni P, Vescovini R, Fagnoni F, et al. The immune system in extreme longevity. Exp Gerontol. 2008;43(2):61–65. DOI:10.1016/j.exger.2007.06.008
  • Sakata-Kaneko S, Wakatsuki Y, Matsunaga Y, et al. Altered Th1/Th2 commitment in human CD4+ T cells with ageing. Clin Exp Immunol. 2000;120(2):267–273. doi:10.1046/j.1365-2249.2000.01224.x.
  • Pritz T, Lair J, Ban M, et al. Plasma cell numbers decrease in bone marrow of old patients. Eur J Immunol. 2015;45(3):738–746. DOI:10.1002/eji.201444878
  • McKenna RW, Washington LT, Aquino DB, et al. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood. 2001;98(8):2498–2507. DOI:10.1182/blood.V98.8.2498
  • Dailey RW, Eun S-Y, Russell CE, et al. B cells of aged mice show decreased expansion in response to antigen, but are normal in effector function. Cell Immunol. 2001;214(2):99–109. DOI:10.1006/cimm.2001.1894
  • Ventura MT, Scichilone N, Paganelli R, et al. Allergic diseases in the elderly: biological characteristics and main immunological and non-immunological mechanisms. Clin Mol Allergy. 2017;15(1):2. DOI:10.1186/s12948-017-0059-2
  • Dunn RM, Busse PJ, Wechsler ME. Asthma in the elderly and late-onset adult asthma. Allergy. 2018;73(2):284–294.
  • Crisford H, Sapey E, Rogers GB, et al. Neutrophils in asthma: the good, the bad and the bacteria. Thorax. 2021;76(8):835–844. DOI:10.1136/thoraxjnl-2020-215986
  • Bullone Mand Lavoie JP, Lavoie J-P. The contribution of oxidative stress and inflamm-aging in human and equine asthma. Int J Mol Sci. 2017;18(12):2612.
  • Godwin MS, Reeder KM, Garth JM, et al. IL-1RA regulates immunopathogenesis during fungal-associated allergic airway inflammation. JCI Insight. 2019;4(21).
  • Busse W, Corren J, Lanier BQ, et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol. 2001;108(2):184–190. DOI:10.1067/mai.2001.117880
  • Pavord ID, Korn S, Howarth P, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):651–659. DOI:10.1016/S0140-6736(12)60988-X
  • Hua F, Ribbing J, Reinisch W, et al. A pharmacokinetic comparison of anrukinzumab, an anti- IL-13 monoclonal antibody, among healthy volunteers, asthma and ulcerative colitis patients. Br J Clin Pharmacol. 2015;80(1):101–109. DOI:10.1111/bcp.12589
  • Soma T, Uchida Y, Hoshino Y, et al. Relationship between airway inflammation and airflow limitation in elderly asthmatics. Asia Pac Allergy. 2020;10(2):e17. DOI:10.5415/apallergy.2020.10.e17
  • Soma T, Nagata M. Immunosenescence, Inflammaging, and lung senescence in asthma in the elderly. Biomolecules. 2022;12(10):1456.
  • Busse PJ, Zhang TF, Srivastava K, et al. Effect of ageing on pulmonary inflammation, airway hyperresponsiveness and T and B cell responses in antigen-sensitized and -challenged mice. Clin Exp Allergy. 2007;37(9):1392–1403. DOI:10.1111/j.1365-2222.2007.02775.x
  • Kinyanjui MW, Shan J, Nakada EM, et al. Dose-Dependent Effects of IL-17 on IL-13–Induced Airway Inflammatory Responses and Airway Hyperresponsiveness. J Immunol. 2013;190(8):3859–3868. DOI:10.4049/jimmunol.1200506
  • Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020;583(7814):127–132. doi:10.1038/s41586-020-2403-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.