116
Views
0
CrossRef citations to date
0
Altmetric
Review

Assessing accuracy of testing and diagnosis in cystic fibrosis

ORCID Icon &
Pages 337-349 | Received 16 Feb 2023, Accepted 09 May 2023, Published online: 18 May 2023

References

  • Hegyi P, Wilschanski M, Muallem S, et al. CFTR: a new horizon in the pathomechanism and treatment of pancreatitis. Rev Physiol Biochem Pharmacol. 2016;170:37–66.
  • Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci. 2017;74(1):93.
  • Farrell PM, White TB, Ren CL, et al. Diagnosis of cystic fibrosis: consensus guidelines from the cystic fibrosis foundation. J Pediatr. 2017;181:S4–15.1.
  • Sermet-Gaudelus I, Girodon E, Vermeulen F, et al. ECFS standards of care on CFTR-related disorders: diagnostic criteria of CFTR dysfunction. J Cystic Fibrosis. 2022;21(6):922–936. DOI:10.1016/j.jcf.2022.09.005
  • Schrijver I, Pique L, Graham S, et al. The Spectrum of CFTR Variants in Nonwhite Cystic Fibrosis Patients: implications for Molecular Diagnostic Testing. J Mol Diagn. Internet. 2016 [cited 2023 Mar 21]. ;181:39–50. 10.1016/j.jmoldx.2015.07.005.
  • de Boeck K, Derichs N, Fajac I, et al. New clinical diagnostic procedures for cystic fibrosis in Europe. J Cystic Fibrosis. 2011;10:53–66.
  • Heijerman HGM, McKone EF, Downey DG, et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet. 2019;394(10212):1940–1948. DOI:10.1016/S0140-6736(19)32597-8
  • Ramsey BW, Davies J, McElvaney NG, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365(18):1663. DOI:10.1056/NEJMoa1105185
  • Bombieri C, Claustres M, de Boeck K, et al. Recommendations for the classification of diseases as CFTR-related disorders. J Cystic Fibrosis. 2011;10:S86–102.
  • Castellani C, de Boeck K, de Wachter E. ECFS standards of care on CFTR-related disorders: updated diagnostic criteria. J Cystic Fibrosis. 2022;12(6):45.
  • Šimundić A-M. Measures of diagnostic accuracy: basic definitions. EJIFCC. 2009;19(4):203.
  • Collie JTB, Massie RJ, Jones OAH, et al. Sixty-five years since the New York heat wave: advances in sweat testing for cystic fibrosis. Pediatr Pulmonol. 2014;49(2):106–117. DOI:10.1002/ppul.22945
  • Mackay R, George P, Kirk J. Sweat testing for cystic fibrosis: a review of New Zealand laboratories. J Paediatr Child Health. Internet. 2006 [cited 2023 Jan 2] ;424 :160–164. 10.1111/j.1440-1754.2006.00822.x.
  • Aralica M, Krleza JL. Evaluating performance in sweat testing in medical biochemistry laboratories in Croatia. Biochem Med (Zagreb). Internet. 2017 [[cited 2023 Jan 2]];27:122–130. 10.11613/BM.2017.016.
  • Servidoni MF, Gomez CCS, Marson FAL, et al. Sweat test and cystic fibrosis: overview of test performance at public and private centers in the state of São Paulo, Brazil. J Bras Pneumol. Internet. 2017 [cited 2023 Jan 2]. ;432:121–128. 10.1590/s1806-37562016000000076.
  • Sant’agnese P D, Darling RC, Perera GA, et al. Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas. Clinical significance and relationship to the disease. Pediatrics. 1953;12(5):549–563. DOI:10.1542/peds.12.5.549
  • Gibson LE, Cooke RE. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics. 1959;23(3):545–549.
  • Sens DA, Simmons MA, Spicer SS. The analysis of human sweat proteins by isoelectric focusing. I. Sweat collection utilizing the Macroduct system demonstrates the presence of previously unrecognized sex-related Proteins. Pediat Res. 1985;19(8):8. 1985;19:873–878. DOI:10.1203/00006450-198508000-00020.
  • Rose JB, Ellis L, John B, et al. Does the Macroduct® collection system reliably define sweat chloride concentration in subjects with intermediate results? Clin Biochem. 2009;42(12):1260–1264. DOI:10.1016/j.clinbiochem.2009.05.001
  • Webster HL, Rundell CA. Laboratory diagnosis of cystic fibrosis. Crit Rev Clin Lab Sci. 1983;18(4):313–338.
  • Cimbalo C, Tosco A, Terlizzi V, et al. Elevated sweat chloride test: is it always cystic fibrosis? Ital J Pediatr. Internet. 2021 [cited 2022 Dec 19]. ;471:1–5. 10.1186/s13052-021-01060-1.
  • Cirilli N, Southern KW, Buzzetti R, et al. Real life practice of sweat testing in Europe. J Cystic Fibrosis. 2018;17(3):325–332. DOI:10.1016/j.jcf.2017.09.002
  • Accurso FJ, van Goor F, Zha J, et al. Sweat chloride as a biomarker of CFTR activity: proof of concept and ivacaftor clinical trial data. J Cystic Fibrosis. 2014;13(2):139–147. DOI:10.1016/j.jcf.2013.09.007
  • Salvatore M, Amato A, Floridia G, et al. The Italian external quality assessment program for cystic fibrosis sweat chloride test: does active participation improve the quality? Int J Environ Res Public Health. 2020;17(9):3196. DOI:10.3390/ijerph17093196
  • Mishra A, Greaves R, Smith K, et al. Diagnosis of cystic fibrosis by sweat testing: age-specific reference intervals. J Pediatr. 2008;153(6):153. DOI:10.1016/j.jpeds.2008.04.067
  • Vermeulen F, Lebecque P, de Boeck K, et al. Biological variability of the sweat chloride in diagnostic sweat tests: a retrospective analysis. J Cystic Fibrosis. 2017;16(1):30–35. DOI:10.1016/j.jcf.2016.11.008
  • Vermeulen F, le Camus C, Davies JC, et al. Variability of sweat chloride concentration in subjects with cystic fibrosis and G551D mutations. J Cystic Fibrosis. 2017;16(1):36–40. DOI:10.1016/j.jcf.2016.02.015
  • Mishra A, Greaves R, Massie J. The relevance of sweat testing for the diagnosis of cystic fibrosis in the genomic era. Clin Biochem Rev. 2005;26(4):135.
  • Highsmith WE, Burch LH, Zhou Z, et al. A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N Engl J Med. 1994;331(15):974–980. DOI:10.1056/NEJM199410133311503
  • Gonska T, Choi P, Stephenson A, et al. Role of cystic fibrosis transmembrane conductance regulator in patients with chronic sinopulmonary disease. Chest. 2012;142(4):996–1004. DOI:10.1378/chest.11-2543
  • Ooi CY, Dupuis A, Ellis L, et al. Does extensive genotyping and nasal potential difference testing clarify the diagnosis of cystic fibrosis among patients with single-organ manifestations of cystic fibrosis? Thorax. 2014;69(3):254–260. DOI:10.1136/thoraxjnl-2013-203832
  • Wilschanski M, Dupuis A, Ellis L, et al. Mutations in the cystic fibrosis transmembrane regulator gene and in vivo transepithelial potentials. Am J Respir Crit Care Med. 2006;174(7):787–794. DOI:10.1164/rccm.200509-1377OC
  • Kyrilli S, Henry T, Wilschanski M, et al. Insights into the variability of nasal potential difference, a biomarker of CFTR activity. J Cyst Fibros. 2020;19(4):620–626. DOI:10.1016/j.jcf.2019.09.015
  • O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet. 2009;373(9678):1891–1904.
  • Fidler MC, Beusmans J, Panorchan P, et al. Correlation of sweat chloride and percent predicted FEV1 in cystic fibrosis patients treated with ivacaftor. J Cystic Fibrosis. 2017;16(1):41–44. DOI:10.1016/j.jcf.2016.10.002
  • Davis PB, Schluchter MD, Konstan MW. Relation of sweat chloride concentration to severity of lung disease in cystic fibrosis. Pediatr Pulmonol. 2004;38(3):204–209.
  • Durmowicz AG, Witzmann KA, Rosebraugh CJ, et al. Change in sweat chloride as a clinical end point in cystic fibrosis clinical trials: the ivacaftor experience. Chest. 2013;143(1):14–18. DOI:10.1378/chest.12-1430
  • Caudri D, Zitter D, Bronsveld I, et al. Is sweat chloride predictive of severity of cystic fibrosis lung disease assessed by chest computed tomography? Pediatr Pulmonol. 2017;52(9):1135–1141. DOI:10.1002/ppul.23739
  • Gokdemir Y, Karadag BT. Sweat testing and recent advances. Front Pediatr. 2021;9. DOI:10.3389/fped.2021.649904
  • Domingos MT, Magdalena NIR, Cat MNL, et al. Sweat conductivity and coulometric quantitative test in neonatal cystic fibrosis screening. J Pediatr (Rio J). 2015;91(6):590–595. DOI:10.1016/j.jped.2015.03.003
  • Mattar ACV, Leone C, Rodrigues JC, et al. Sweat conductivity: an accurate diagnostic test for cystic fibrosis? J Cystic Fibrosis. 2014;13(5):528–533. DOI:10.1016/j.jcf.2014.01.002
  • Cinel G, Doğru D, Yalçın E, et al. Sweat conductivity test: can it replace chloride titration for cystic fibrosis diagnosis? Turk J Pediatr. 2012;54(6):576–582.
  • Lezana JL, Vargas MH, Karam-Bechara J, et al. Sweat conductivity and chloride titration for cystic fibrosis diagnosis in 3834 subjects. J Cystic Fibrosis. 2003;2(1):1–7. DOI:10.1016/S1569-1993(02)00146-7
  • Hammond KB, Turcios NL, Gibson LE. Clinical evaluation of the Macroduct sweat collection system and conductivity analyzer in the diagnosis of cystic fibrosis. J Pediatr. 1994;124(2):255–260.
  • Beauchamp M, Lands LC. Sweat-testing: a review of current technical requirements. Pediatr Pulmonol. 2005;39(6):507–511.
  • Quinton P, Molyneux L, Ip W, et al. β-Adrenergic sweat secretion as a diagnostic test for cystic fibrosis. Am J Respir Crit Care Med. 2012;186(8):732–739. DOI:10.1164/rccm.201205-0922OC
  • Wine JJ, Char JE, Chen J, et al. In vivo readout of CFTR function: ratiometric measurement of CFTR-dependent secretion by individual, identifiable human sweat glands. PLoS ONE. 2013;8(10):e77114. DOI:10.1371/journal.pone.0077114
  • Wine JJ. How the sweat gland reveals levels of CFTR activity. J Cystic Fibrosis. 2022;21(3):396–406.
  • Zampoli M, Verstraete J, Nguyen-Khoa T, et al. β-adrenergic sweat test in children with inconclusive cystic fibrosis diagnosis: do we need new reference ranges? Pediatr Pulmonol. Internet. 2023 [cited 2023 Jan 2]. ;581:187–196. 10.1002/ppul.26179.
  • Pallenberg ST, Junge S, Ringshausen FC, et al. CFTR modulation with elexacaftor-tezacaftor-ivacaftor in people with cystic fibrosis assessed by the β-adrenergic sweat rate assay. J Cystic Fibrosis. 2022;21(3):47. DOI:10.1016/j.jcf.2021.10.005
  • Rowe SM, Heltshe SL, Gonska T, et al. Clinical Mechanism of the Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor in G551D-mediated Cystic Fibrosis. Am J Respir Crit Care Med. Internet. 2014 [cited 2023 Jan 30]. ;1902:175–184. 10.1164/rccm.201404-0703OC.
  • Knowles MR, Paradiso AM, Boucher RC. In vivo nasal potential difference: techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis. Hum Gene Ther. 1995;6(4):445–455.
  • Schüler D, Sermet-Gaudelus I, Wilschanski M, et al. Basic protocol for transepithelial nasal potential difference measurements. J Cystic Fibrosis. 2004;3:151–155.
  • Ooi CY, Dupuis A, Gonska T, et al. Does integration of various ion channel measurements improve diagnostic performance in cystic fibrosis? Ann Am Thorac Soc. Internet. 2014 [cited 2022 Nov 19]. ;114:562–570. 10.1513/AnnalsATS.201311-412OC.
  • Knowles MR, Carson JL, Collier AM, et al. Measurements of nasal transepithelial electric potential differences in normal human subjects in vivo. Am Rev Respir Dis. 1981;124(4):484–490. DOI:10.1164/arrd.1981.124.4.484
  • Alton EWFW, Currie D, Logan-Sinclair R, et al. Nasal potential difference: a clinical diagnostic test for cystic fibrosis. Eur Respir J. 1990;3(8):922–926. DOI:10.1183/09031936.93.03080922
  • Solomon GM, Konstan MW, Wilschanski M, et al. An international randomized multicenter comparison of nasal potential difference techniques. Chest. 2010;138:919–928.
  • Vermeulen F, Proesmans M, Feyaerts N, et al. Nasal potential measurements on the nasal floor and under the inferior turbinate: does it matter? Pediatr Pulmonol. 2011;46(2):145–152. DOI:10.1002/ppul.21333
  • Bronsveld I, Vermeulen F, Sands D, et al. Influence of perfusate temperature on nasal potential difference. Eur Respir J. 2013;42(2):389–393. DOI:10.1183/09031936.00097712
  • Naehrlich L, Ballmann M, Davies J, et al. Nasal potential difference measurements in diagnosis of cystic fibrosis: an international survey. J Cystic Fibrosis. 2014;13(1):24–28. DOI:10.1016/j.jcf.2013.08.006
  • Standaert TA, Boitano L, Emerson J, et al. Standardized procedure for measurement of nasal potential difference: an outcome measure in multicenter cystic fibrosis clinical trials. Pediatr Pulmonol. 2004;37(5):385–392. DOI:10.1002/ppul.10448
  • Sermet-Gaudelus I, Girodon E, Sands D, et al. Clinical phenotype and genotype of children with borderline sweat test and abnormal nasal epithelial chloride transport. Am J Respir Crit Care Med. 2010;182(7):929–936. DOI:10.101164/rccm201203-0382OC
  • Tridello G, Menin L, Pintani E, et al. Nasal potential difference outcomes support diagnostic decisions in cystic fibrosis. J Cyst Fibros. 2016;15(5):579–582. DOI:10.1016/j.jcf.2016.06.009
  • Wilschanski M, Famini H, Strauss-Liviatan N, et al. Nasal potential difference measurements in patients with atypical cystic fibrosis. Eur Respir J. 2001;17(6):1208–1215. DOI:10.1183/09031936.01.00092501
  • Middleton PG, House HH. Measurement of airway ion transport assists the diagnosis of cystic fibrosis. Pediatr Pulmonol. 2010;45(8):789–795.
  • Jaron R, Yaakov Y, Rivlin J, et al. Nasal potential difference in non-classic cystic fibrosis—long term follow up. Pediatr Pulmonol. 2008;43(6):545–549. DOI:10.1002/ppul.20807
  • Boucher RC, Bromberg PA, Gatzy JT. Airway transepithelial electric potential in vivo: species and regional differences. J Appl Physiol Respir Environ Exerc Physiol. 1980;48(1):169–176.
  • Yaakov Y, Kerem E, Yahav Y, et al. Reproducibility of nasal potential difference measurements in cystic fibrosis. Chest. 2007;132(4):1219–1226. DOI:10.1378/chest.06-2975
  • Fajac I, Hubert D, Bienvenu T, et al. Relationships between nasal potential difference and respiratory function in adults with cystic fibrosis. Eur Respir J. 1998;12(6):1295–1300. DOI:10.1183/09031936.98.12061295
  • Rowe SM, Liu B, Hill A, et al. Optimizing nasal potential difference analysis for CFTR modulator development: assessment of ivacaftor in CF subjects with the G551D-CFTR mutation. PLoS ONE. 2013;8(7):e66955. DOI:10.1371/journal.pone.0066955
  • Keenan K, Avolio J, Rueckes-Nilges C, et al. Nasal potential difference: best or average result for CFTR function as diagnostic criteria for cystic fibrosis? J Cyst Fibros. 2015;14(3):310–316. DOI:10.1016/j.jcf.2014.09.006
  • Procianoy E da FA, de Abreu e Silva FA, Maróstica PJC, et al. Chloride conductance, nasal potential difference and cystic fibrosis pathophysiology. Lung. 2020;198(1):151–156. DOI:10.1007/s00408-019-00293-6
  • Ho L, Samways J, Porteous D, et al. Correlation between nasal potential difference measurements, genotype and clinical condition in patients with cystic fibrosis. Eur Respir J. 1997;10(9):2018–2022. DOI:10.1183/09031936.97.10092018
  • Simmonds NJ, D’souza L, Roughton M, et al. Cystic fibrosis and survival to 40 years: a study of cystic fibrosis transmembrane conductance regulator function.
  • Goubau C, Wilschanski M, Skalická V, et al. Phenotypic characterisation of patients with intermediate sweat chloride values: towards validation of the European diagnostic algorithm for cystic fibrosis. Thorax. 2009;64(8):683–691. DOI:10.1136/thx.2008.104752
  • Sermet-Gaudelus I, Girodon E, Roussel D, et al. Measurement of nasal potential difference in young children with an equivocal sweat test following newborn screening for cystic fibrosis. Thorax. 2010;65(6):539–544. DOI:10.1136/thx.2009.123422
  • Nguyen-Khoa T, Hatton A, Drummond D, et al. Reclassifying inconclusive diagnosis for cystic fibrosis with new generation sweat test. Eur Respir J. 2022;60(2):60. DOI:10.1183/13993003.00209-2022
  • Berschneider HM, Knowles MR, Azizkhan RG, et al. Altered intestinal chloride transport in cystic fibrosis. Faseb J. 1988;2(10):2625–2629. DOI:10.1096/fasebj.2.10.2838365
  • Bijman J, Veeze H, Kansen M, et al. Chloride transport in the cystic fibrosis enterocyte. Adv Exp Med Biol. 1991;290:287–296.
  • Graeber SY, Hug MJ, Sommerburg O, et al. Intestinal current measurements detect activation of mutant CFTR in patients with cystic fibrosis with the G551D mutation treated with ivacaftor. Am J Respir Crit Care Med. 2015;192(10):1252–1255. DOI:10.1164/rccm.201507-1271LE
  • Graeber SY, Dopfer C, Naehrlich L, et al. Effects of lumacaftor–ivacaftor therapy on cystic fibrosis transmembrane conductance regulator function in phe508del homozygous patients with cystic fibrosis. Am J Respir Crit Care Med. 2018;197(11):1433–1442. DOI:10.1164/rccm.201710-1983OC
  • Masson A, Schneider-Futschik EK, Baatallah N, et al. Predictive factors for lumacaftor/ivacaftor clinical response. J Cystic Fibrosis. 2019;18(3):368–374. DOI:10.1016/j.jcf.2018.12.011
  • Veeze HJ, Sinaasaf’pel M, Bijman J, et al. Ion transport abnormalities in rectal suction biopsies from children with cystic fibrosis. Gastroenterology. 1991;101(2):398403. DOI:10.1016/0016-5085(91)90017-F
  • Mall M, Bleich M, Schürlein M, et al. Cholinergic ion secretion in human colon requires coactivation by cAMP. Am J Physiol Gastrointest Liver Physiol. 1998;275(6):275. DOI:10.1152/ajpgi.1998.275.6.G1274
  • van Barneveld A, Stanke F, Ballmann M, et al. Ex vivo biochemical analysis of CFTR in human rectal biopsies. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2006;1762(4):393–397. DOI:10.1016/j.bbadis.2006.01.007
  • Clancy JP, Szczesniak RD, Ashlock MA, et al. Multicenter intestinal current measurements in rectal biopsies from CF and non-CF subjects to monitor CFTR function. PLoS ONE. 2013;8(9):e73905. DOI:10.1371/journal.pone.0073905
  • Högenauer C, Ana CAS, Porter JL, et al. Active intestinal chloride secretion in human carriers of cystic fibrosis mutations: an evaluation of the hypothesis that heterozygotes have subnormal active intestinal chloride secretion. Am J Hum Genet. 2000;67(6):1422–1427. DOI:10.1086/316911
  • Derichs N, Sanz J, von Kanel T, et al. Intestinal current measurement for diagnostic classification of patients with questionable cystic fibrosis: validation and reference data. Thorax. 2010;65(7):594–599. DOI:10.1136/thx.2009.125088
  • de Winter-De Groot KM, Janssens HM, van Uum RT, et al. Stratifying infants with cystic fibrosis for disease severity using intestinal organoid swelling as a biomarker of CFTR function. Eur Respir J. Internet. 2018 [cited 2023 Mar 29]. ;523:1702529. 10.1183/13993003.02529-2017.
  • Veeze HJ, Sinaasappel M, Bijman J, et al. Ion transport abnormalities in rectal suction biopsies from children with cystic fibrosis. Gastroenterology. 1991;101(2):398–403. DOI:10.1016/0016-5085(91)90017-F
  • Mall M, Wissner A, Seydewitz HH, et al. Defective cholinergic Cl − secretion and detection of K + secretion in rectal biopsies from cystic fibrosis patients. Am J Physiol Gastrointest Liver Physiol. 2000;278(4):278. DOI:10.1152/ajpgi.2000.278.4.G617
  • Scheinert S, Pinders-Kessel L, Klosinski M, et al. 55 Reliability of intestinal current measurement as CFTR biomarker and responsiveness to oral ivacaftor treatment. J Cystic Fibrosis. 2013;12:S62.
  • Hardcastle J, Hardcastle PT, Taylor CJ, et al. Failure of cholinergic stimulation to induce a secretory response from the rectal mucosa in cystic fibrosis. Gut. 1991;32(9):1035. DOI:10.1136/gut.32.9.1035
  • Taylor CJ, Baxter PS, Hardcastle J, et al. Failure to induce secretion in jejunal biopsies from children with cystic fibrosis. Gut. 1988;29(7):957. DOI:10.1136/gut.29.7.957
  • Sousa M, Servidoni MF, Vinagre AM, et al. Measurements of CFTR-mediated Cl− secretion in human rectal biopsies constitute a robust biomarker for cystic fibrosis diagnosis and prognosis. PLoS ONE. 2012;7(10):e47708. DOI:10.1371/journal.pone.0047708
  • Cohen-Cymberknoh M, Yaakov Y, Shoseyov D, et al. Evaluation of the intestinal current measurement method as a diagnostic test for cystic fibrosis. Pediatr Pulmonol. 2013;48(3):229–235. DOI:10.1002/ppul.22586
  • Taylor CJ, Hughes H, Hardcastle PT, et al. Genotype and secretory response in cystic fibrosis. Lancet. 1992;339(8784):67–68. DOI:10.1016/0140-6736(92)90201-D
  • Veeze HJ, Halley DJJ, Bijman J, et al. Determinants of mild clinical symptoms in cystic fibrosis patients. Residual chloride secretion measured in rectal biopsies in relation to the genotype. J Clin Invest. 1994;93(2):461–466. DOI:10.1172/JCI116993
  • Hirtz S, Gonska T, Seydewitz HH, et al. CFTR Cl− channel function in native human colon correlates with the genotype and phenotype in cystic fibrosis. Gastroenterology. 2004;127(4):1085–1095. DOI:10.1053/j.gastro.2004.07.006
  • Graeber SY, van Mourik P, Vonk AM, et al. Comparison of organoid swelling and in vivo biomarkers of cftr function to determine effects of lumacaftor–ivacaftor in patients with cystic fibrosis homozygous for the f508del mutation. Am J Respir Crit Care Med. 2020;202(11):1589–1592. DOI:10.1164/rccm.202004-1200LE
  • Pagin A, Sermet-Gaudelus I, Burgel PR. Genetic diagnosis in practice: from cystic fibrosis to CFTR-related disorders. Archives de Pediatrie. 2020;27:eS25–29.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.