2,984
Views
1
CrossRef citations to date
0
Altmetric
Review

A narrative review of nontuberculous mycobacterial pulmonary disease: microbiology, epidemiology, diagnosis, and management challenges

Pages 973-988 | Received 08 Sep 2023, Accepted 09 Nov 2023, Published online: 28 Nov 2023

References

  • Cook GM, Berney M, Gebhard S, et al. Physiology of mycobacteria. Adv Microb Physiol. 2009;55:81–182, 318–9. doi: 10.1016/S0065-2911(09)05502-7
  • Hayman J. Mycobacterium ulcerans: an infection from Jurassic time? Lancet. 1984 Nov 3;2(8410):1015–1016. doi: 10.1016/S0140-6736(84)91110-3
  • Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev. 2003 Jul;16(3):463–496. doi: 10.1128/CMR.16.3.463-496.2003
  • Brode SK, Daley CL, Marras TK. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: a systematic review. Int J Tuberc Lung Dis. 2014 Nov;18(11):1370–1377. doi: 10.5588/ijtld.14.0120
  • Falkinham JO. 3rd. Environmental sources of nontuberculous mycobacteria. Clin Chest Med. 2015 Mar;36(1):35–41. doi: 10.1016/j.ccm.2014.10.003
  • Daley CL, Iaccarino JM, Lange C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin Infect Dis. 2020 Aug 14;71(4):905–913. doi: 10.1093/cid/ciaa1125
  • Winthrop KL, McNelley E, Kendall B, et al. Pulmonary nontuberculous mycobacterial disease prevalence and clinical features: an emerging public health disease. Am J Respir Crit Care Med. 2010 Oct 1;182(7):977–982. doi: 10.1164/rccm.201003-0503OC
  • Johnson MM, Odell JA. Nontuberculous mycobacterial pulmonary infections. J Thorac Dis. 2014 Mar;6(3):210–220. doi: 10.3978/j.issn.2072-1439.2013.12.24
  • Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007 Feb 15;175(4):367–416. doi: 10.1164/rccm.200604-571ST
  • LPSN. Genus Mycobacterium Sudbury, Massachusetts2023. [cited 2023 Jun 6]. Available from: https://lpsn.dsmz.de/genus/mycobacterium
  • Prevots DR, Marras TK. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med. 2015 Mar;36(1):13–34. doi: 10.1016/j.ccm.2014.10.002
  • Yan M, Brode SK, Marras TK. The other nontuberculous mycobacteria: clinical aspects of lung disease caused by less common slowly growing nontuberculous mycobacteria species. Chest. 2023 Feb;163(2):281–291. doi: 10.1016/j.chest.2022.09.025
  • Jacobs JM, Stine CB, Baya AM, et al. A review of mycobacteriosis in marine fish. J Fish Dis. 2009 Feb;32(2):119–130. doi: 10.1111/j.1365-2761.2008.01016.x
  • Iivanainen EK, Martikainen PJ, Vaananen PK, et al. Environmental factors affecting the occurrence of mycobacteria in brook waters. Appl Environ Microbiol. 1993 Feb;59(2):398–404. doi: 10.1128/aem.59.2.398-404.1993
  • Amha YM, Anwar MZ, Kumaraswamy R, et al. Mycobacteria in municipal wastewater treatment and reuse: microbial diversity for screening the occurrence of clinically and environmentally relevant species in arid regions. Environ Sci Technol. 2017 Mar 7;51(5):3048–3056. doi: 10.1021/acs.est.6b05580
  • Thomson R, Tolson C, Sidjabat H, et al. Mycobacterium abscessus isolated from municipal water - a potential source of human infection. BMC Infect Dis. 2013 May 25;13(1):241. doi: 10.1186/1471-2334-13-241
  • Thomson R, Tolson C, Carter R, et al. Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM. J Clin Microbiol. 2013 Sep;51(9):3006–3011. doi: 10.1128/JCM.00899-13
  • Cooksey RC, Jhung MA, Yakrus MA, et al. Multiphasic approach reveals genetic diversity of environmental and patient isolates of Mycobacterium mucogenicum and Mycobacterium phocaicum associated with an outbreak of bacteremias at a Texas hospital. Appl Environ Microbiol. 2008 Apr;74(8):2480–2487. doi: 10.1128/AEM.02476-07
  • Falkinham JO 3rd, Iseman MD, de Haas P, et al. Mycobacterium avium in a shower linked to pulmonary disease. J Water Health. 2008 Jun;6(2):209–213. doi: 10.2166/wh.2008.232
  • Lumb R, Stapledon R, Scroop A, et al. Investigation of spa pools associated with lung disorders caused by Mycobacterium avium complex in immunocompetent adults. Appl Environ Microbiol. 2004 Aug;70(8):4906–4910. doi: 10.1128/AEM.70.8.4906-4910.2004
  • Millar BC, Moore JE. Hospital ice, ice machines, and water as sources of nontuberculous mycobacteria: description of qualitative risk assessment models to determine host-nontuberculous mycobacteria interplay. Int J Mycobacteriol. 2020 Oct;9(4):347–362. doi: 10.4103/ijmy.ijmy_179_20
  • Gira AK, Reisenauer AH, Hammock L, et al. Furunculosis due to Mycobacterium mageritense associated with footbaths at a nail salon. J Clin Microbiol. 2004 Apr;42(4):1813–1817. doi: 10.1128/JCM.42.4.1813-1817.2004
  • Lahiri A, Kneisel J, Kloster I, et al. Abundance of Mycobacterium avium ssp. hominissuis in soil and dust in Germany - implications for the infection route. Lett Appl Microbiol. 2014 Jul;59(1):65–70. doi: 10.1111/lam.12243
  • De Groote MA, Pace NR, Fulton K, et al. Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl Environ Microbiol. 2006 Dec;72(12):7602–7606. doi: 10.1128/AEM.00930-06
  • Iivanainen EK, Martikainen PJ, Räisänen ML, et al. Mycobacteria in boreal coniferous forest soils. FEMS Microbiol Ecol. 1997;23(4):325–332. doi: 10.1016/S0168-6496(97)00040-8
  • Bouam A, Armstrong N, Levasseur A, et al. Mycobacterium terramassiliense, Mycobacterium rhizamassiliense and Mycobacterium numidiamassiliense sp. nov., three new Mycobacterium simiae complex species cultured from plant roots. Sci Rep. 2018 Jun 18;8(1):9309. doi: 10.1038/s41598-018-27629-1
  • Tran PM, Dahl JL. Mycobacterium sarraceniae sp. nov. And Mycobacterium helvum sp. nov., isolated from the pitcher plant Sarracenia purpurea. Int J Syst Evol Microbiol. 2016 Nov;66(11):4480–4485. doi: 10.1099/ijsem.0.001377
  • Primm TP, Lucero CA, Falkinham JO. 3rd. Health impacts of environmental mycobacteria. Clin Microbiol Rev. 2004 Jan;17(1):98–106. doi: 10.1128/CMR.17.1.98-106.2004
  • Mangione EJ, Huitt G, Lenaway D, et al. Nontuberculous mycobacterial disease following hot tub exposure. Emerg Infect Dis. 2001 Nov;7(6):1039–1042. doi: 10.3201/eid0706.010623
  • Choi S, Choi MI. Solation of nontuberculous mycobacteria (NTM) from air conditioner dust. Korean J Clin Lab Sci. 2017;49:435–438. doi: 10.15324/kjcls.2017.49.4.435
  • Leski TA, Malanoski AP, Gregory MJ, et al. Application of a broad-range resequencing array for detection of pathogens in desert dust samples from Kuwait and Iraq. Appl Environ Microbiol. 2011 Jul;77(13):4285–4292. doi: 10.1128/AEM.00021-11
  • Parikh A, Vinnard C, Fahrenfeld N, et al. Revisiting John snow to meet the challenge of nontuberculous mycobacterial lung disease. Int J Environ Res Public Health. 2019 Nov 1;16(21):4250. doi: 10.3390/ijerph16214250
  • Pyarali FF, Schweitzer M, Bagley V, et al. Increasing non-tuberculous mycobacteria infections in veterans with COPD and association with increased risk of mortality. Front Med. 2018;5:311. doi: 10.3389/fmed.2018.00311
  • Jankovic M, Samarzija M, Sabol I, et al. Geographical distribution and clinical relevance of non-tuberculous mycobacteria in Croatia. Int J Tuberc Lung Dis. 2013 Jun;17(6):836–841. doi: 10.5588/ijtld.12.0843
  • Liu CF, Song YM, He WC, et al. Nontuberculous mycobacteria in China: incidence and antimicrobial resistance spectrum from a nationwide survey. Infect Dis Poverty. 2021 Apr 29;10(1):59. doi: 10.1186/s40249-021-00844-1
  • Adjemian J, Olivier KN, Seitz AE, et al. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med. 2012 Apr 15;185(8):881–886. doi: 10.1164/rccm.201111-2016OC
  • Strollo SE, Adjemian J, Adjemian MK, et al. The burden of pulmonary nontuberculous mycobacterial disease in the United states. Ann Am Thorac Soc. 2015 Oct;12(10):1458–1464. doi: 10.1513/AnnalsATS.201503-173OC
  • Adjemian J, Olivier KN, Seitz AE, et al. Spatial clusters of nontuberculous mycobacterial lung disease in the United states. Am J Respir Crit Care Med. 2012 Sep 15;186(6):553–558. doi: 10.1164/rccm.201205-0913OC
  • Maki T, Noda J, Morimoto K, et al. Long-range transport of airborne bacteria over East Asia: Asian dust events carry potentially nontuberculous Mycobacterium populations. Environ Int. 2022 Oct;168:107471
  • Thomson RM, Furuya-Kanamori L, Coffey C, et al. Influence of climate variables on the rising incidence of nontuberculous mycobacterial (NTM) infections in Queensland, Australia 2001-2016. Sci Total Environ. 2020 Oct 20;740:139796. doi: 10.1016/j.scitotenv.2020.139796
  • Honda JR, Bernhard JN, Chan ED. Natural disasters and nontuberculous mycobacteria: a recipe for increased disease? Chest. 2015 Feb;147(2):304–308. doi: 10.1378/chest.14-0974
  • Kambali S, Quinonez E, Sharifi A, et al. Pulmonary nontuberculous mycobacterial disease in Florida and association with large-scale natural disasters. BMC Public Health. 2021 Nov 10;21(1):2058. doi: 10.1186/s12889-021-12115-7
  • Nishiuchi Y, Iwamoto T, Maruyama F. Infection sources of a common non-tuberculous mycobacterial Pathogen, Mycobacterium avium complex. Front Med. 2017;4:27. doi: 10.3389/fmed.2017.00027
  • Jeon D. Infection source and epidemiology of nontuberculous mycobacterial lung disease. Tuberc Respir Dis (Seoul). 2019 Apr;82(2):94–101. doi: 10.4046/trd.2018.0026
  • Park Y, Kwak SH, Yong SH, et al. The association between behavioral risk factors and nontuberculous mycobacterial pulmonary disease. Yonsei Med J. 2021 Aug;62(8):702–707. doi: 10.3349/ymj.2021.62.8.702
  • Gundacker ND, Gonzalez JA, Sheinin YM, et al. Hot tub lung: case report and review of the literature. WMJ. 2022 Jul;121(2):E31–E33.
  • Campos-Gutierrez S, Ramos-Real MJ, Abreu R, et al. Pseudo-outbreak of Mycobacterium fortuitum in a hospital bronchoscopy unit. Am J Infect Control. 2020 Jul;48(7):765–769. doi: 10.1016/j.ajic.2019.11.019
  • Falkinham JO. Growth in catheter biofilms and antibiotic resistance of Mycobacterium avium. J Med Microbiol. 2007 Feb;56(Pt 2):250–254. doi: 10.1099/jmm.0.46935-0
  • Motawea KR, Rabea RK, Elhalag RH, et al. Cosmetic operative care abroad leads to a multidrug-resistant Mycobacterium abscessus infection in a patient: a case report. J Med Case Rep. 2022 Nov 29;16(1):448. doi: 10.1186/s13256-022-03678-z
  • Bolcato M, Rodriguez D, Aprile A. Risk management in the New frontier of professional liability for nosocomial infection: review of the literature on mycobacterium chimaera. Int J Environ Res Public Health. 2020 Oct 7;17(19):7328. doi: 10.3390/ijerph17197328
  • Aitken ML, Limaye A, Pottinger P, et al. Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med. 2012 Jan 15;185(2):231–232. doi: 10.1164/ajrccm.185.2.231
  • Chan ED, Iseman MD. Underlying host risk factors for nontuberculous mycobacterial lung disease. Semin Respir Crit Care Med. 2013 Feb;34(1):110–123. doi: 10.1055/s-0033-1333573
  • Winthrop KL, Marras TK, Adjemian J, et al. Incidence and prevalence of nontuberculous mycobacterial lung disease in a large U.S. Managed Care health plan, 2008-2015. Ann Am Thorac Soc. 2020 Feb;17(2):178–185. doi: 10.1513/AnnalsATS.201804-236OC
  • Loebinger MR, Quint JK, van der Laan R, et al. Risk factors for nontuberculous mycobacterial pulmonary disease: a systematic literature review and meta-analysis. Chest. 2023 Jun 17;164(5):1115–1124. doi: 10.1016/j.chest.2023.06.014
  • Prieto MD, Alam ME, Franciosi AN, et al. Global burden of nontuberculous mycobacteria in the cystic fibrosis population: a systematic review and meta-analysis. ERJ Open Res. 2023 Jan;9(1):00336–2022. doi: 10.1183/23120541.00336-2022
  • Low D, Wilson DA, Flume PA. Screening practices for nontuberculous mycobacteria at US cystic fibrosis centers. J Cyst Fibros. 2020 Jul;19(4):569–574. doi: 10.1016/j.jcf.2020.02.013
  • Esther CR Jr., Esserman DA, Gilligan P, et al. Chronic Mycobacterium abscessus infection and lung function decline in cystic fibrosis. J Cyst Fibros. 2010 Mar;9(2):117–123. doi: 10.1016/j.jcf.2009.12.001
  • Qvist T, Taylor-Robinson D, Waldmann E, et al. Comparing the harmful effects of nontuberculous mycobacteria and gram negative bacteria on lung function in patients with cystic fibrosis. J Cyst Fibros. 2016 May;15(3):380–385. doi: 10.1016/j.jcf.2015.09.007
  • Eikani MS, Nugent M, Poursina A, et al. Clinical course and significance of nontuberculous mycobacteria and its subtypes in cystic fibrosis. BMC Infect Dis. 2018 Jul 6;18(1):311. doi: 10.1186/s12879-018-3200-z
  • Marras TK, Campitelli MA, Kwong JC, et al. Risk of nontuberculous mycobacterial pulmonary disease with obstructive lung disease. Eur Respir J. 2016 Sep;48(3):928–931. doi: 10.1183/13993003.00033-2016
  • Andrejak C, Nielsen R, Thomsen VO, et al. Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis. Thorax. 2013 Mar;68(3):256–262. doi: 10.1136/thoraxjnl-2012-201772
  • Shu CC, Wei YF, Chen KH, et al. Inhaled corticosteroids increase risk of nontuberculous mycobacterial lung disease: a nested case-control study and meta-analysis. J Infect Dis. 2022 Feb 15;225(4):627–636. doi: 10.1093/infdis/jiab428
  • Huang CT, Tsai YJ, Wu HD, et al. Impact of non-tuberculous mycobacteria on pulmonary function decline in chronic obstructive pulmonary disease. Int J Tuberc Lung Dis. 2012 Apr;16(4):539–545. doi: 10.5588/ijtld.11.0412
  • Chu H, Zhao L, Xiao H, et al. Prevalence of nontuberculous mycobacteria in patients with bronchiectasis: a meta-analysis. Arch Med Sci. 2014 Aug 29;10(4):661–668. doi: 10.5114/aoms.2014.44857
  • Zhou Y, Mu W, Zhang J, et al. Global prevalence of non-tuberculous mycobacteria in adults with non-cystic fibrosis bronchiectasis 2006-2021: a systematic review and meta-analysis. BMJ Open. 2022 Aug 1;12(8):e055672. doi: 10.1136/bmjopen-2021-055672
  • Mirsaeidi M, Hadid W, Ericsoussi B, et al. Non-tuberculous mycobacterial disease is common in patients with non-cystic fibrosis bronchiectasis. Int J Infect Dis. 2013 Nov;17(11):e1000–4. doi: 10.1016/j.ijid.2013.03.018
  • Aksamit TR, O’Donnell AE, Barker A, et al. Adult patients with bronchiectasis: a first look at the US bronchiectasis research registry. Chest. 2017 May;151(5):982–992. doi: 10.1016/j.chest.2016.10.055
  • Yin H, Gu X, Wang Y, et al. Clinical characteristics of patients with bronchiectasis with nontuberculous mycobacterial disease in Mainland China: a single center cross-sectional study. BMC Infect Dis. 2021 Dec 6;21(1):1216. doi: 10.1186/s12879-021-06917-8
  • Lin CY, Huang HY, Hsieh MH, et al. Impacts of Nontuberculous Mycobacteria Isolates in Non-cystic Fibrosis Bronchiectasis: A 16-Year Cohort Study in Taiwan. Front Microbiol. 2022;13:868435. doi: 10.3389/fmicb.2022.868435
  • Wang PH, Pan SW, Wang SM, et al. The Impact of nontuberculous mycobacteria species on mortality in patients with nontuberculous mycobacterial lung disease. Front Microbiol. 2022;13:909274. doi: 10.3389/fmicb.2022.909274
  • Huang HL, Cheng MH, Lu PL, et al. Epidemiology and predictors of NTM pulmonary infection in Taiwan - a retrospective, five-year multicenter study. Sci Rep. 2017 Nov 24;7(1):16300. doi: 10.1038/s41598-017-16559-z
  • Fifor A, Krukowski K, Honda JR. Sex, ancestry, senescence, and aging (SAnSA) are stark drivers of nontuberculous mycobacterial pulmonary disease. J Clin Tuberc Other Mycobact Dis. 2022 Feb;26:100297. doi: 10.1016/j.jctube.2022.100297
  • Namasivayam S, Sher A, Glickman MS, et al. The microbiome and tuberculosis: early evidence for cross talk. MBio. 2018 Sep 18;9(5). doi: 10.1128/mBio.01420-18
  • Thornton CS, Mellett M, Jarand J, et al. The respiratory microbiome and nontuberculous mycobacteria: an emerging concern in human health. Eur Respir Rev. 2021 Jun 30;30(160):200299. doi: 10.1183/16000617.0299-2020
  • Prevots DR, Shaw PA, Strickland D, et al. Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med. 2010 Oct 1;182(7):970–976. doi: 10.1164/rccm.201002-0310OC
  • Thomson RM. Centre NTMwgaQTC, Queensland mycobacterial reference L. Changing epidemiology of pulmonary nontuberculous mycobacteria infections. Emerg Infect Dis. 2010 Oct;16(10):1576–1583. doi: 10.3201/eid1610.091201
  • Park Y, Kim CY, Park MS, et al. Age- and sex-related characteristics of the increasing trend of nontuberculous mycobacteria pulmonary disease in a tertiary hospital in South Korea from 2006 to 2016. Korean J Intern Med. 2020 Nov;35(6):1424–1431. doi: 10.3904/kjim.2019.395
  • Cassidy PM, Hedberg K, Saulson A, et al. Nontuberculous mycobacterial disease prevalence and risk factors: a changing epidemiology. Clin Infect Dis. 2009 Dec 15;49(12):e124–9. doi: 10.1086/648443
  • Izumi K, Morimoto K, Hasegawa N, et al. Epidemiology of adults and children treated for nontuberculous mycobacterial pulmonary disease in Japan. Ann Am Thorac Soc. 2019 Mar;16(3):341–347. doi: 10.1513/AnnalsATS.201806-366OC
  • Sexton P, Harrison AC. Susceptibility to nontuberculous mycobacterial lung disease. Eur Respir J. 2008 Jun;31(6):1322–1333. doi: 10.1183/09031936.00140007
  • Colombo RE, Hill SC, Claypool RJ, et al. Familial clustering of pulmonary nontuberculous mycobacterial disease. Chest. 2010 Mar;137(3):629–634. doi: 10.1378/chest.09-1173
  • Kobashi Y, Yoshida K, Niki Y, et al. Sibling cases of Mycobacterium avium complex disease associated with hematological disease. J Infect Chemother. 2006 Oct;12(5):331–334. doi: 10.1007/s10156-006-0461-Z
  • Adjemian J, Frankland TB, Daida YG, et al. Epidemiology of Nontuberculous Mycobacterial Lung Disease and Tuberculosis, Hawaii, USA. Emerg Infect Dis. 2017 Mar;23(3):439–447. doi: 10.3201/eid2303.161827
  • Blakney RA, Ricotta EE, Frankland TB, et al. Incidence of Nontuberculous Mycobacterial Pulmonary Infection, by Ethnic Group, Hawaii, USA, 2005-2019. Emerg Infect Dis. 2022 Aug;28(8):1543–1550. doi: 10.3201/eid2808.212375
  • Schildkraut JA, Gallagher J, Morimoto K, et al. Epidemiology of nontuberculous mycobacterial pulmonary disease in Europe and Japan by Delphi estimation. Respir med. 2020 Nov;173:106164
  • van Ingen J, Obradovic M, Hassan M, et al. Nontuberculous mycobacterial lung disease caused by Mycobacterium avium complex - disease burden, unmet needs, and advances in treatment developments. Expert Rev Respir Med. 2021 Nov;15(11):1387–1401. doi: 10.1080/17476348.2021.1987891
  • Oliveira MJ, Gaio AR, Gomes M, et al. Mycobacterium avium infection in Portugal. Int J Tuberc Lung Dis. 2017 Feb 1;21(2):218–222. doi: 10.5588/ijtld.16.0002
  • Winthrop KL, Henkle E, Walker A, et al. On the reportability of nontuberculous mycobacterial disease to public health authorities. Ann Am Thorac Soc. 2017 Mar;14(3):314–317. doi: 10.1513/AnnalsATS.201610-802PS
  • Adjemian J, Daniel-Wayman S, Ricotta E, et al. Epidemiology of nontuberculous mycobacteriosis. Semin Respir Crit Care Med. 2018 Jun;39(3):325–335. doi: 10.1055/s-0038-1651491
  • Dahl VN, Molhave M, Floe A, et al. Global trends of pulmonary infections with nontuberculous mycobacteria: a systematic review. Int J Infect Dis. 2022 Dec;125:120–131. doi: 10.1016/j.ijid.2022.10.013
  • Haworth CS, Banks J, Capstick T, et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax. 2017 Nov;72(Suppl 2):ii1–ii64. doi: 10.1136/thoraxjnl-2017-210927
  • Ahmed I, Tiberi S, Farooqi J, et al. Non-tuberculous mycobacterial infections-A neglected and emerging problem. Int J Infect Dis. 2020 Mar;92S:S46–S50
  • Hoefsloot W, van Ingen J, Andrejak C, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013 Dec;42(6):1604–1613. doi: 10.1183/09031936.00149212
  • Tsai YV, Derrick C, Yunusa I, et al. Epidemiology, outcomes and tolerability of protracted treatment of nontuberculous mycobacterial infections at a community teaching hospital in the southeastern United states. Antibiotics. 2022 Nov 29;11(12):1720. doi: 10.3390/antibiotics11121720
  • Zweijpfenning SMH, van Ingen J, Hoefsloot W. Geographic distribution of nontuberculous mycobacteria isolated from clinical specimens: asystematic review. Semin Respir Crit Care Med. 2018 Jun;39(3):336–342. doi: 10.1055/s-0038-1660864
  • Dahl VN, Laursen LL, He Y, et al. Species distribution among patients with nontuberculous mycobacteria pulmonary disease in Europe. J Infect. 2023 Nov;87(5):469–472. doi: 10.1016/j.jinf.2023.03.010
  • Lee YM, Kim MJ, Kim YJ. Increasing trend of nontuberculous mycobacteria isolation in a referral clinical laboratory in South Korea. Medicina (Kaunas). 2021 Jul 16;57(7):720. doi: 10.3390/medicina57070720
  • Ryoo SW, Shin S, Shim MS, et al. Spread of nontuberculous mycobacteria from 1993 to 2006 in Koreans. J Clin Lab Anal. 2008;22(6):415–420. doi: 10.1002/jcla.20278
  • Okoi C, Anderson STB, Antonio M, et al. Non-tuberculous mycobacteria isolated from pulmonary samples in sub-Saharan Africa - a systematic review and meta analyses. Sci Rep. 2017 Sep 20;7(1):12002. doi: 10.1038/s41598-017-12175-z
  • Cheng A, Sun HY, Tsai YT, et al. Longitudinal non-cystic fibrosis trends of pulmonary Mycobacterium abscessus disease from 2010 to 2017: spread of the “globally successful clone” in Asia. ERJ Open Res. 2021 Jan;7(1):00191–2020. doi: 10.1183/23120541.00191-2020
  • Donohue MJ, Wymer L. Increasing prevalence rate of nontuberculous mycobacteria infections in Five states, 2008-2013. Ann Am Thorac Soc. 2016 Dec;13(12):2143–2150. doi: 10.1513/AnnalsATS.201605-353OC
  • Boyle DP, Zembower TR, Reddy S, et al. Comparison of Clinical Features, Virulence, and Relapse among Mycobacterium avium Complex Species. Am J Respir Crit Care Med. 2015 Jun 1;191(11):1310–1317. doi: 10.1164/rccm.201501-0067OC
  • Dean SG, Ricotta EE, Fintzi J, et al. Mycobacterial testing trends, United states, 2009-2015(1). Emerg Infect Dis. 2020 Sep;26(9):2243–2246. doi: 10.3201/eid2609.200749
  • Marras TK, Mendelson D, Marchand-Austin A, et al. Pulmonary nontuberculous mycobacterial disease, Ontario, Canada, 1998-2010. Emerg Infect Dis. 2013 Nov;19(11):1889–1891. doi: 10.3201/eid1911.130737
  • Santin M, Barrabeig I, Malchair P, et al. Pulmonary infections with nontuberculous mycobacteria, Catalonia, Spain, 1994-2014. Emerg Infect Dis. 2018 Jun;24(6):1091–1094. doi: 10.3201/eid2406.172095
  • Ringshausen FC, Wagner D, de Roux A, et al. Prevalence of nontuberculous mycobacterial pulmonary disease, Germany, 2009-2014. Emerg Infect Dis. 2016 Jun;22(6):1102–1105. doi: 10.3201/eid2206.151642
  • Henry MT, Inamdar L, O’Riordain D, et al. Nontuberculous mycobacteria in non-HIV patients: epidemiology, treatment and response. Eur Respir J. 2004 May;23(5):741–746. doi: 10.1183/09031936.04.00114004
  • Moore JE, Kruijshaar ME, Ormerod LP, et al. Increasing reports of non-tuberculous mycobacteria in England, Wales and Northern Ireland, 1995-2006. BMC Public Health. 2010 Oct 15;10(1):612. doi: 10.1186/1471-2458-10-612
  • Cowman S, Burns K, Benson S, et al. The antimicrobial susceptibility of non-tuberculous mycobacteria. J Infect. 2016 Mar;72(3):324–331. doi: 10.1016/j.jinf.2015.12.007
  • van Ingen J, Hoefsloot W, Dekhuijzen PN, et al. The changing pattern of clinical mycobacterium avium isolation in the Netherlands. Int J Tuberc Lung Dis. 2010 Sep;14(9):1176–1180.
  • Koh WJ, Chang B, Jeong BH, et al. Increasing recovery of nontuberculous mycobacteria from respiratory specimens over a 10-year period in a tertiary referral hospital in South Korea. Tuberc Respir Dis (Seoul). 2013 Nov;75(5):199–204. doi: 10.4046/trd.2013.75.5.199
  • Ko RE, Moon SM, Ahn S, et al. Changing epidemiology of nontuberculous mycobacterial lung diseases in a tertiary referral hospital in Korea between 2001 and 2015. J Korean Med Sci. 2018 Feb 19;33(8):e65. doi: 10.3346/jkms.2018.33.e65
  • Lee H, Myung W, Koh WJ, et al. Epidemiology of nontuberculous mycobacterial infection, South Korea, 2007-2016. Emerg Infect Dis. 2019 Mar;25(3):569–572. doi: 10.3201/eid2503.181597
  • Park SC, Kang MJ, Han CH, et al. Prevalence, incidence, and mortality of nontuberculous mycobacterial infection in Korea: a nationwide population-based study. BMC Pulm Med. 2019 Aug 1;19(1):140. doi: 10.1186/s12890-019-0901-z
  • Chien JY, Lai CC, Sheng WH, et al. Pulmonary infection and colonization with nontuberculous mycobacteria, Taiwan, 2000-2012. Emerg Infect Dis. 2014 Aug;20(8):1382–1385. doi: 10.3201/eid2008.131673
  • Ding LW, Lai CC, Lee LN, et al. Disease caused by non-tuberculous mycobacteria in a university hospital in Taiwan, 1997-2003. Epidemiol Infect. 2006 Oct;134(5):1060–1067. doi: 10.1017/S0950268805005698
  • Namkoong H, Kurashima A, Morimoto K, et al. Epidemiology of pulmonary nontuberculous mycobacterial disease, Japan. Emerg Infect Dis. 2016 Jun;22(6):1116–1117. doi: 10.3201/eid2206.151086
  • Kim HO, Lee K, Choi HK, et al. Incidence, comorbidities, and treatment patterns of nontuberculous mycobacterial infection in South Korea. Medicine (Baltimore). 2019 Nov;98(45):e17869. doi: 10.1097/MD.0000000000017869
  • O’Brien DP, Currie BJ, Krause VL. Nontuberculous mycobacterial disease in northern Australia: a case series and review of the literature. Clin Infect Dis. 2000 Oct;31(4):958–967. doi: 10.1086/318136
  • Thomson R, Donnan E, Konstantinos A. Notification of nontuberculous mycobacteria: an Australian perspective. Ann Am Thorac Soc. 2017 Mar;14(3):318–323. doi: 10.1513/AnnalsATS.201612-994OI
  • Chaptal M, Andrejak C, Bonifay T, et al. Epidemiology of infection by pulmonary non-tuberculous mycobacteria in French Guiana 2008-2018. PLoS Negl Trop Dis. 2022 Sep;16(9):e0010693. doi: 10.1371/journal.pntd.0010693
  • Greif G, Coitinho C, van Ingen J, et al. Species distribution and isolation Frequency of nontuberculous mycobacteria, Uruguay. Emerg Infect Dis. 2020 May;26(5):1014–1018. doi: 10.3201/eid2605.191631
  • Bethencourt Mirabal A, Ferrer G. Lung Nontuberculous Mycobacterial Infections. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan.
  • Daley CL, Iaccarino JM, Lange C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J. 2020 Jul;56(1):2000535. doi: 10.1183/13993003.00535-2020
  • Brown-Elliott BA, Wallace RJ Jr. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin Microbiol Rev. 2002 Oct;15(4):716–746. doi: 10.1128/CMR.15.4.716-746.2002
  • Koh WJ, Jeon K, Lee NY, et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med. 2011 Feb 1;183(3):405–410. doi: 10.1164/rccm.201003-0395OC
  • Choi GE, Shin SJ, Won CJ, et al. Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance. Am J Respir Crit Care Med. 2012 Nov 1;186(9):917–925. doi: 10.1164/rccm.201111-2005OC
  • Steingart KR, Henry M, Ng V, et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis. 2006 Sep;6(9):570–581. doi: 10.1016/S1473-3099(06)70578-3
  • Ulukanligil M, Aslan G, Tasci S. A comparative study on the different staining methods and number of specimens for the detection of acid fast bacilli. Mem Inst Oswaldo Cruz. 2000 Nov;95(6):855–858. doi: 10.1590/S0074-02762000000600019
  • Wright PW, Wallace RJ Jr., Wright NW, et al. Sensitivity of fluorochrome microscopy for detection of Mycobacterium tuberculosis versus nontuberculous mycobacteria. J Clin Microbiol. 1998 Apr;36(4):1046–1049. doi: 10.1128/JCM.36.4.1046-1049.1998
  • Murray SJ, Barrett A, Magee JG, et al. Optimisation of acid fast smears for the direct detection of mycobacteria in clinical samples. J Clin Pathol. 2003 Aug;56(8):613–615. doi: 10.1136/jcp.56.8.613
  • Saleeb PG, Drake SK, Murray PR, et al. Identification of mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011 May;49(5):1790–1794. doi: 10.1128/JCM.02135-10
  • Lotz A, Ferroni A, Beretti JL, et al. Rapid identification of mycobacterial whole cells in solid and liquid culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2010 Dec;48(12):4481–4486. doi: 10.1128/JCM.01397-10
  • El Khechine A, Couderc C, Flaudrops C, et al. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice. PLoS One. 2011;6(9):e24720. doi: 10.1371/journal.pone.0024720
  • Fangous MS, Mougari F, Gouriou S, et al. Classification algorithm for subspecies identification within the Mycobacterium abscessus species, based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2014 Sep;52(9):3362–3369. doi: 10.1128/JCM.00788-14
  • Rodriguez-Sanchez B, Ruiz-Serrano MJ, Marin M, et al. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nontuberculous mycobacteria from clinical isolates. J Clin Microbiol. 2015 Aug;53(8):2737–2740. doi: 10.1128/JCM.01380-15
  • Huang JH, Kao PN, Adi V, et al. Mycobacterium avium-intracellulare pulmonary infection in HIV-negative patients without preexisting lung disease: diagnostic and management limitations. Chest. 1999 Apr;115(4):1033–1040. doi: 10.1378/chest.115.4.1033
  • Daley CL, Winthrop KL. Mycobacterium avium complex: addressing gaps in diagnosis and management. J Infect Dis. 2020 Aug 20;222(Suppl 4):S199–S211. doi: 10.1093/infdis/jiaa354
  • Herrera V, Perry S, Parsonnet J, et al. Clinical application and limitations of interferon-gamma release assays for the diagnosis of latent tuberculosis infection. Clin Infect Dis. 2011 Apr 15;52(8):1031–1037. doi: 10.1093/cid/cir068
  • Hamada Y, Gupta RK, Quartagno M, et al. Predictive performance of interferon-gamma release assays and the tuberculin skin test for incident tuberculosis: an individual participant data meta-analysis. EClinicalMedicine. 2023 Feb;56:101815.
  • Guan CP, Wu YH, Wang XF, et al. The performance of interferon gamma release assays in patients with nontuberculous mycobacterial infection: a systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis. 2023 Oct;42(10):1251–1262. doi: 10.1007/s10096-023-04662-1
  • Martinez-Planas A, Baquero-Artigao F, Santiago B, et al. Interferon-gamma release assays differentiate between Mycobacterium avium complex and tuberculous Lymphadenitis in children. J Pediatr. 2021 Sep;236:211–218 e2 doi: 10.1016/j.peds.2021.05.008
  • Yang C, Luo X, Fan L, et al. Performance of interferon-gamma release assays in the diagnosis of nontuberculous mycobacterial diseases-A retrospective survey from 2011 to 2019. Front Cell Infect Microbiol. 2020;10:571230. doi: 10.3389/fcimb.2020.571230
  • Steindor M, Stehling F, Olivier M, et al. Species-specific interferon-gamma release assay for the diagnosis of Mycobacterium abscessus complex infection. Front Microbiol. 2021;12:692395. doi: 10.3389/fmicb.2021.692395
  • Cao XJ, Li YP, Wang JY, et al. MPT64 assays for the rapid detection of Mycobacterium tuberculosis. BMC Infect Dis. 2021 Apr 10;21(1):336. doi: 10.1186/s12879-021-06022-w
  • Yin X, Zheng L, Lin L, et al. Commercial MPT64-based tests for rapid identification of Mycobacterium tuberculosis complex: a meta-analysis. J Infect. 2013 Nov;67(5):369–377. doi: 10.1016/j.jinf.2013.06.009
  • Dadheech M, Malhotra AG, Patel S, et al. Molecular identification of non-tuberculous mycobacteria in suspected tuberculosis cases in central India. Cureus. 2023 Jun;15(6):e39992. doi: 10.7759/cureus.39992
  • Chen S, Wang F, Xue Y, et al. Doubled nontuberculous mycobacteria isolation as a consequence of changes in the diagnosis algorithm. Infect Drug Resist. 2022;15:3347–3355. doi: 10.2147/IDR.S368671
  • Stavri H, Ulea I, Radu DL, et al. Serodiagnosis of environmental mycobacterial infections. J Microbiol Methods. 2011 Sep;86(3):283–290. doi: 10.1016/j.mimet.2011.05.010
  • Kitada S, Kobayashi K, Ichiyama S, et al. Serodiagnosis of Mycobacterium avium-complex pulmonary disease using an enzyme immunoassay kit. Am J Respir Crit Care Med. 2008 Apr 1;177(7):793–797. doi: 10.1164/rccm.200705-771OC
  • Jeong BH, Kim SY, Jeon K, et al. Serodiagnosis of Mycobacterium avium complex and Mycobacterium abscessus complex pulmonary disease by use of IgA antibodies to glycopeptidolipid core antigen. J Clin Microbiol. 2013 Aug;51(8):2747–2749. doi: 10.1128/JCM.00702-13
  • Kitada S, Levin A, Hiserote M, et al. Serodiagnosis of Mycobacterium avium complex pulmonary disease in the USA. Eur Respir J. 2013 Aug;42(2):454–460. doi: 10.1183/09031936.00098212
  • Shu CC, Ato M, Wang JT, et al. Sero-diagnosis of Mycobacterium avium complex lung disease using serum immunoglobulin A antibody against glycopeptidolipid antigen in Taiwan. PLoS One. 2013;8(11):e80473. doi: 10.1371/journal.pone.0080473
  • Kobayashi K. Serodiagnosis of Mycobacterium avium complex disease in humans: translational research from basic mycobacteriology to clinical medicine. Jpn J Infect Dis. 2014;67(5):329–332. doi: 10.7883/yoken.67.329
  • Shibata Y, Horita N, Yamamoto M, et al. Diagnostic test accuracy of anti-glycopeptidolipid-core IgA antibodies for Mycobacterium avium complex pulmonary disease: systematic review and meta-analysis. Sci Rep. 2016 Jul 4;6(1):29325. doi: 10.1038/srep29325
  • Kitada S, Nishiuchi Y, Hiraga T, et al. Serological test and chest computed tomography findings in patients with Mycobacterium avium complex lung disease. Eur Respir J. 2007 Jun;29(6):1217–1223. doi: 10.1183/09031936.00061806
  • Jhun BW, Kim SY, Park HY, et al. Changes in serum IgA antibody levels against the glycopeptidolipid core antigen during antibiotic treatment of Mycobacterium avium complex lung disease. Jpn J Infect Dis. 2017 Sep 25;70(5):582–585. doi: 10.7883/yoken.JJID.2016.523
  • Kitada S, Maekura R, Yoshimura K, et al. Levels of Antibody against Glycopeptidolipid Core as a Marker for Monitoring Treatment Response in Mycobacterium avium Complex Pulmonary Disease: a Prospective Cohort Study. J Clin Microbiol. 2017 Mar;55(3):884–892. doi: 10.1128/JCM.02010-16
  • Ferroni A, Sermet-Gaudelus I, Le Bourgeois M, et al. Measurement of immunoglobulin G against Mycobacterial antigen A60 in patients with cystic fibrosis and lung infection due to Mycobacterium abscessus. Clin Infect Dis. 2005 Jan 1;40(1):58–66. doi: 10.1086/426442
  • Qvist T, Pressler T, Taylor-Robinson D, et al. Serodiagnosis of Mycobacterium abscessus complex infection in cystic fibrosis. Eur Respir J. 2015 Sep;46(3):707–716. doi: 10.1183/09031936.00011815
  • Tran AC, Halse TA, Escuyer VE, et al. Detection of Mycobacterium avium complex DNA directly in clinical respiratory specimens: opportunities for improved turn-around time and cost savings. Diagn Microbiol Infect Dis. 2014 May;79(1):43–48. doi: 10.1016/j.diagmicrobio.2014.01.019
  • Kim S, Park EM, Kwon OJ, et al. Direct application of the PCR restriction analysis method for identifying NTM species in AFB smear-positive respiratory specimens. Int J Tuberc Lung Dis. 2008 Nov;12(11):1344–1346.
  • Seagar AL, Prendergast C, Emmanuel FX, et al. Evaluation of the GenoType mycobacteria direct assay for the simultaneous detection of the Mycobacterium tuberculosis complex and four atypical mycobacterial species in smear-positive respiratory specimens. J Med Microbiol. 2008 May;57(Pt 5):605–611. doi: 10.1099/jmm.0.47484-0
  • Schildhaus HU, Steindor M, Kolsch B, et al. GenoType CM direct® and VisionArray Myco® for the rapid identification of mycobacteria from clinical specimens. J Clin Med. 2022 Apr 25;11(9):2404. doi: 10.3390/jcm11092404
  • Vinnard C, Mezochow A, Oakland H, et al. Assessing response to therapy for nontuberculous mycobacterial lung disease: Quo Vadis? Front Microbiol. 2018;9:2813. doi: 10.3389/fmicb.2018.02813
  • Kim SY, Koh WJ, Park HY, et al. Changes in serum immunomolecules during antibiotic therapy for Mycobacterium avium complex lung disease. Clin Exp Immunol. 2014 Apr;176(1):93–101. doi: 10.1111/cei.12253
  • Hong JY, Jang SH, Kim SY, et al. Elevated serum CA 19-9 levels in patients with pulmonary nontuberculous mycobacterial disease. Braz J Infect Dis. 2016 Jan;20(1):26–32. doi: 10.1016/j.bjid.2015.09.005
  • Lange C, Bottger EC, Cambau E, et al. Consensus management recommendations for less common non-tuberculous mycobacterial pulmonary diseases. Lancet Infect Dis. 2022 Jul;22(7):e178–e190. doi: 10.1016/S1473-3099(21)00586-7
  • Kim JY, Lee HW, Yim JJ, et al. Outcomes of adjunctive surgery in patients with nontuberculous mycobacterial pulmonary disease: a systematic review and meta-analysis. Chest. 2023 Apr;163(4):763–777. doi: 10.1016/j.chest.2022.09.037
  • Kwak N, Whang J, Yang JS, et al. Minimal Inhibitory Concentration of Clofazimine among clinical isolates of nontuberculous mycobacteria and its Impact on treatment outcome. Chest. 2021 Feb;159(2):517–523. doi: 10.1016/j.chest.2020.07.040
  • Jarand J, Davis JP, Cowie RL, et al. Long-term follow-up of Mycobacterium avium complex lung disease in patients treated with regimens including clofazimine and/or rifampin. Chest. 2016 May;149(5):1285–1293. doi: 10.1378/chest.15-0543
  • Yang B, Jhun BW, Moon SM, et al. Clofazimine-containing regimen for the treatment of Mycobacterium abscessus lung disease. Antimicrob Agents Chemother. 2017 Jun;61(6). doi: 10.1128/AAC.02052-16
  • Pfaeffle HOI, Alameer RM, Marshall MH, et al. Clofazimine for treatment of multidrug-resistant non-tuberculous mycobacteria. Pulm Pharmacol Ther. 2021 Oct;70:102058
  • Opal S, File TM, van der Poll T, et al. An integrated safety Summary of Omadacycline, a novel aminomethylcycline antibiotic. Clin Infect Dis. 2019 Aug 1;69(Suppl 1):S40–S47. doi: 10.1093/cid/ciz398
  • Shoen C, Benaroch D, Sklaney M, et al. In vitro activities of Omadacycline against rapidly growing mycobacteria. Antimicrob Agents Chemother. 2019 May;63(5). doi: 10.1128/AAC.02522-18
  • Kaushik A, Ammerman NC, Martins O, et al. In vitro activity of New tetracycline analogs omadacycline and eravacycline against drug-resistant clinical isolates of Mycobacterium abscessus. Antimicrob Agents Chemother. 2019 Jun;63(6). doi: 10.1128/AAC.00470-19
  • Brown-Elliott BA, Wallace RJ Jr. In Vitro Susceptibility Testing of Omadacycline against Nontuberculous Mycobacteria. Antimicrob Agents Chemother. 2021 Feb 17;65(3). doi: 10.1128/AAC.01947-20
  • DeStefano MS, Shoen CM, Alley MRK, et al. In vitro Activities of Epetraborole, a novel bacterial Leucyl-tRNA Synthetase inhibitor, against Mycobacterium avium complex isolates [poster 1713]. (WA) DC: IDWeek; 2022.
  • Ganapathy US, Gengenbacher M, Dick T. Epetraborole Is Active against Mycobacterium abscessus. Antimicrob Agents Chemother. 2021 Sep 17;65(10):e0115621. doi: 10.1128/AAC.01156-21
  • Locher CP, Jones SM, Hanzelka BL, et al. A novel inhibitor of gyrase B is a potent drug candidate for treatment of tuberculosis and nontuberculosis mycobacterial infections. Antimicrob Agents Chemother. 2015 Mar;59(3):1455–1465. doi: 10.1128/AAC.04347-14
  • Grossman TH, Bartels DJ, Mullin S, et al. Dual targeting of GyrB and ParE by a novel aminobenzimidazole class of antibacterial compounds. Antimicrob Agents Chemother. 2007 Feb;51(2):657–666. doi: 10.1128/AAC.00596-06
  • Durcik M, Tomasic T, Zidar N, et al. ATP-competitive DNA gyrase and topoisomerase IV inhibitors as antibacterial agents. Expert Opin Ther Pat. 2019 Mar;29(3):171–180. doi: 10.1080/13543776.2019.1575362
  • Henderson SR, Stevenson CEM, Malone B, et al. Structural and mechanistic analysis of ATPase inhibitors targeting mycobacterial DNA gyrase. J Antimicrob Chemother. 2020 Oct 1;75(10):2835–2842. doi: 10.1093/jac/dkaa286
  • Cotroneo N, Stokes SS, Pucci MJ, et al. Efficacy of SPR720 in murine models of nontuberculous mycobacterial pulmonary infection. J Antimicrob Chemother. 2023.
  • Rubio A, Stapleton M, Verma D, et al. Potent activity of a novel gyrase inhibitor (SPR719/SPR720) in vitro and in a prolonged acute Mycobacterium abscessus mouse model of infection [poster SUN-539]. (WA) DC2018: ASM Microbe/American Society for Microbiology; 2018.
  • Egelund EF, Fennelly KP, Peloquin CA. Medications and monitoring in nontuberculous mycobacteria infections. Clin Chest Med. 2015 Mar;36(1):55–66. doi: 10.1016/j.ccm.2014.11.001
  • Abate G, Stapleton JT, Rouphael N, et al. Variability in the management of adults with pulmonary nontuberculous mycobacterial disease. Clin Infect Dis. 2021 Apr 8;72(7):1127–1137. doi: 10.1093/cid/ciaa252
  • Marras TK, Vinnard C, Zhang Q, et al. Relative risk of all-cause mortality in patients with nontuberculous mycobacterial lung disease in a US managed care population. Respir med. 2018 Dec;145:80–88. doi: 10.1016/j.rmed.2018.10.022
  • Mirsaeidi M, Machado RF, Garcia JG, et al. Nontuberculous mycobacterial disease mortality in the United states, 1999-2010: a population-based comparative study. PLoS One. 2014;9(3):e91879. doi: 10.1371/journal.pone.0091879
  • Kwak N, Park J, Kim E, et al. Treatment outcomes of Mycobacterium avium complex lung disease: a systematic review and meta-analysis. Clin Infect Dis. 2017 Oct 1;65(7):1077–1084. doi: 10.1093/cid/cix517
  • Diel R, Lipman M, Hoefsloot W. High mortality in patients with Mycobacterium avium complex lung disease: a systematic review. BMC Infect Dis. 2018 May 3;18(1):206. doi: 10.1186/s12879-018-3113-x
  • Im Y, Hwang NY, Kim K, et al. Impact of time between diagnosis and treatment for nontuberculous mycobacterial pulmonary disease on culture conversion and all-cause mortality. Chest. 2022 May;161(5):1192–1200. doi: 10.1016/j.chest.2021.10.048
  • Park Y, Lee EH, Jung I, et al. Clinical characteristics and treatment outcomes of patients with macrolide-resistant Mycobacterium avium complex pulmonary disease: a systematic review and meta-analysis. Respir Res. 2019 Dec 18;20(1):286. doi: 10.1186/s12931-019-1258-9
  • Adjemian J, Prevots DR, Gallagher J, et al. Lack of adherence to evidence-based treatment guidelines for nontuberculous mycobacterial lung disease. Ann Am Thorac Soc. 2014 Jan;11(1):9–16. doi: 10.1513/AnnalsATS.201304-085OC
  • Izumi K, Morimoto K, Uchimura K, et al. Population-based survey of antimycobacterial drug use among patients with non-tuberculosis mycobacterial pulmonary disease. ERJ Open Res. 2020;6(1):00097–2019. doi: 10.1183/23120541.00097-2019
  • Ku JH, Henkle E, Aksamit TR, et al. Treatment of nontuberculous mycobacterial (NTM) pulmonary infection in the US bronchiectasis and NTM registry: treatment patterns, adverse events, and adherence to american thoracic Society/Infectious disease Society of America treatment guidelines. Clin Infect Dis. 2023 Jan 13;76(2):338–341. doi: 10.1093/cid/ciac788
  • Kwak N, Lee JH, Kim HJ, et al. New-onset nontuberculous mycobacterial pulmonary disease in bronchiectasis: tracking the clinical and radiographic changes. BMC Pulm Med. 2020 Nov 10;20(1):293. doi: 10.1186/s12890-020-01331-3
  • Kwak N, Kim SA, Choi SM, et al. Longitudinal changes in health-related quality of life according to clinical course among patients with non-tuberculous mycobacterial pulmonary disease: a prospective cohort study. BMC Pulm Med. 2020 May 7;20(1):126. doi: 10.1186/s12890-020-1165-3
  • Pasipanodya JG, Ogbonna D, Ferro BE, et al. Systematic review and meta-analyses of the effect of chemotherapy on pulmonary Mycobacterium abscessus outcomes and disease recurrence. Antimicrob Agents Chemother. 2017 Nov;61(11). doi: 10.1128/AAC.01206-17
  • Miwa S, Shirai M, Toyoshima M, et al. Efficacy of clarithromycin and ethambutol for Mycobacterium avium complex pulmonary disease. A preliminary study. Ann Am Thorac Soc. 2014 Jan;11(1):23–29. doi: 10.1513/AnnalsATS.201308-266OC
  • Diel R, Nienhaus A, Ringshausen FC, et al. Microbiologic outcome of interventions against mycobacterium avium complex pulmonary disease: a systematic review. Chest. 2018 Apr;153(4):888–921. doi: 10.1016/j.chest.2018.01.024
  • Morimoto K, Namkoong H, Hasegawa N, et al. Macrolide-Resistant Mycobacterium avium Complex Lung Disease: Analysis of 102 Consecutive Cases. Ann Am Thorac Soc. 2016 Nov;13(11):1904–1911. doi: 10.1513/AnnalsATS.201604-246OC
  • Cheng LP, Chen SH, Lou H, et al. Factors associated with treatment outcome in patients with nontuberculous mycobacterial pulmonary disease: a large population-based retrospective cohort study in Shanghai. Trop Med Infect Dis. 2022 Feb 15;7(2):27. doi: 10.3390/tropicalmed7020027
  • Kim BG, Jhun BW, Kim H, et al. Treatment outcomes of Mycobacterium avium complex pulmonary disease according to disease severity. Sci Rep. 2022 Feb 4;12(1):1970. doi: 10.1038/s41598-022-06022-z
  • Koh WJ, Moon SM, Kim SY, et al. Outcomes of Mycobacterium avium complex lung disease based on clinical phenotype. Eur Respir J. 2017 Sep;50(3):1602503. doi: 10.1183/13993003.02503-2016
  • Zweijpfenning S, Kops S, Magis-Escurra C, et al. Treatment and outcome of non-tuberculous mycobacterial pulmonary disease in a predominantly fibro-cavitary disease cohort. Respir med. 2017 Oct;131:220–224
  • Kim JY, Kim NY, Jung HW, et al. Old age is associated with worse treatment outcome and frequent adverse drug reaction in Mycobacterium avium complex pulmonary disease. BMC Pulm Med. 2022 Jul 14;22(1):269. doi: 10.1186/s12890-022-02063-2
  • Aliberti S, Sotgiu G, Castellotti P, et al. Real-life evaluation of clinical outcomes in patients undergoing treatment for non-tuberculous mycobacteria lung disease: a ten-year cohort study. Respir med. 2020 Apr;164:105899. doi: 10.1016/j.rmed.2020.105899
  • Kwon YS, Han M, Kwon BS, et al. Discontinuation rates attributed to adverse events and treatment outcomes between clarithromycin and azithromycin in Mycobacterium avium complex lung disease: a propensity score analysis. J Glob Antimicrob Resist. 2020 Sep;22:106–112. doi: 10.1016/j.jgar.2020.01.004
  • Diel R, Ringshausen F, Richter E, et al. Microbiological and clinical outcomes of treating non-Mycobacterium avium complex nontuberculous mycobacterial pulmonary disease: a systematic review and meta-analysis. Chest. 2017 Jul;152(1):120–142. doi: 10.1016/j.chest.2017.04.166
  • Lee BY, Kim S, Hong Y, et al. Risk factors for recurrence after successful treatment of Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2015;59(6):2972–2977. doi: 10.1128/AAC.04577-14
  • Boyle DP, Zembower TR, Qi C. Relapse versus Reinfection of Mycobacterium avium Complex Pulmonary Disease. Patient Characteristics and Macrolide Susceptibility. Ann Am Thorac Soc. 2016 Nov;13(11):1956–1961. doi: 10.1513/AnnalsATS.201605-344BC
  • Wallace RJ Jr., Brown-Elliott BA, McNulty S, et al. Macrolide/Azalide therapy for nodular/bronchiectatic mycobacterium avium complex lung disease. Chest. 2014 Aug;146(2):276–282. doi: 10.1378/chest.13-2538
  • Kwon YS, Kwon BS, Kim OH, et al. Treatment outcomes after discontinuation of ethambutol due to adverse events in Mycobacterium avium complex lung disease. J Korean Med Sci. 2020 Mar 9;35(9):e59. doi: 10.3346/jkms.2020.35.e59
  • Balavoine C, Blanc F-X, Lanotte P, et al. Adverse events during treatment of nontuberculous mycobacterial lung disease: do they really matter? Eur Respir J. 2018;52(suppl 62):PA2664. doi: 10.1183/13993003.congress-2018.PA2664
  • Griffith DE, Brown BA, Girard WM, et al. Adverse events associated with high-dose rifabutin in macrolide-containing regimens for the treatment of Mycobacterium avium complex lung disease. Clin Infect Dis. 1995 Sep;21(3):594–598. doi: 10.1093/clinids/21.3.594
  • Costa C, Abeijon P, Rodrigues DA, et al. Factors associated with underreporting of adverse drug reactions by patients: a systematic review. Int J Clin Pharm. 2023 May 29. doi: 10.1007/s11096-023-01592-y
  • Garcia-Abeijon P, Costa C, Taracido M, et al. Factors associated with underreporting of adverse drug reactions by health Care professionals: a systematic review update. Drug Saf. 2023 Jul;46(7):625–636. doi: 10.1007/s40264-023-01302-7
  • Brown BA, Griffith DE, Girard W, et al. Relationship of adverse events to serum drug levels in patients receiving high-dose azithromycin for mycobacterial lung disease. Clin Infect Dis. 1997 May;24(5):958–964. doi: 10.1093/clinids/24.5.958
  • van Ingen J, Aliberti S, Andrejak C, et al. Management of Drug Toxicity in Mycobacterium avium Complex Pulmonary Disease: An Expert Panel Survey. Clin Infect Dis. 2021 Jul 1;73(1):e256–e259. doi: 10.1093/cid/ciaa1361
  • Kamii Y, Nagai H, Kawashima M, et al. Adverse reactions associated with long-term drug administration in Mycobacterium avium complex lung disease. Int J Tuberc Lung Dis. 2018 Dec 1;22(12):1505–1510. doi: 10.5588/ijtld.18.0171
  • Griffith DE, Eagle G, Thomson R, et al. Amikacin Liposome Inhalation Suspension for Treatment-Refractory Lung Disease Caused by Mycobacterium avium Complex (CONVERT). A Prospective, Open-Label, Randomized Study. Am J Respir Crit Care Med. 2018 Dec 15;198(12):1559–1569. doi: 10.1164/rccm.201807-1318OC
  • Pravosud V, Mannino DM, Prieto D, et al. Symptom burden and medication use among patients with nontuberculous mycobacterial lung disease. Chronic Obstr Pulm Dis. 2021 Apr 27;8(2):243–254. doi: 10.15326/jcopdf.2020.0184
  • Kim SY, Jhun BW, Moon SM, et al. Mutations in gyrA and gyrB in Moxifloxacin-Resistant Mycobacterium avium Complex and Mycobacterium abscessus Complex Clinical Isolates. Antimicrob Agents Chemother. 2018 Sep;62(9). doi: 10.1128/AAC.00527-18
  • Griffith DE, Brown-Elliott BA, Langsjoen B, et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2006 Oct 15;174(8):928–934. doi: 10.1164/rccm.200603-450OC
  • Kadota T, Matsui H, Hirose T, et al. Analysis of drug treatment outcome in clarithromycin-resistant Mycobacterium avium complex lung disease. BMC Infect Dis. 2016 Jan 27;16(1):31. doi: 10.1186/s12879-016-1384-7
  • Moon SM, Park HY, Kim SY, et al. Clinical Characteristics, Treatment Outcomes, and Resistance Mutations Associated with Macrolide-Resistant Mycobacterium avium Complex Lung Disease. Antimicrob Agents Chemother. 2016 Nov;60(11):6758–6765. doi: 10.1128/AAC.01240-16
  • van der Laan R, Snabilie A, Obradovic M. Meeting the challenges of NTM-PD from the perspective of the organism and the disease process: innovations in drug development and delivery. Respir Res. 2022 Dec 24;23(1):376. doi: 10.1186/s12931-022-02299-w
  • Saxena S, Spaink HP, Forn-Cuni G. Drug Resistance in Nontuberculous Mycobacteria: Mechanisms and Models. Biology. 2021 Jan 29;10(2):96. doi: 10.3390/biology10020096
  • Nasiri MJ, Haeili M, Ghazi M, et al. New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front Microbiol. 2017;8:681. doi: 10.3389/fmicb.2017.00681
  • Li XZ, Zhang L, Nikaido H. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother. 2004 Jul;48(7):2415–2423. doi: 10.1128/AAC.48.7.2415-2423.2004
  • Schmalstieg AM, Srivastava S, Belkaya S, et al. The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. Antimicrob Agents Chemother. 2012 Sep;56(9):4806–4815. doi: 10.1128/AAC.05546-11
  • Machado D, Cannalire R, Santos Costa S, et al. Boosting effect of 2-phenylquinoline efflux inhibitors in combination with macrolides against Mycobacterium smegmatis and Mycobacterium avium. ACS Infect Dis. 2015 Dec 11;1(12):593–603. doi: 10.1021/acsinfecdis.5b00052
  • Duan W, Li X, Ge Y, et al. Mycobacterium tuberculosis Rv1473 is a novel macrolides ABC Efflux Pump regulated by WhiB7. Future Microbiol. 2019 Jan;14(1):47–59. doi: 10.2217/fmb-2018-0207
  • Liu J, Takiff HE, Nikaido H. Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump. J Bacteriol. 1996 Jul;178(13):3791–3795. doi: 10.1128/jb.178.13.3791-3795.1996
  • Silva PE, Bigi F, Santangelo MP, et al. Characterization of P55, a multidrug efflux pump in Mycobacterium bovis and Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2001 Mar;45(3):800–804. doi: 10.1128/AAC.45.3.800-804.2001
  • De Rossi E, Blokpoel MC, Cantoni R, et al. Molecular cloning and functional analysis of a novel tetracycline resistance determinant, tet(V), from Mycobacterium smegmatis. Antimicrob Agents Chemother. 1998 Aug;42(8):1931–1937. doi: 10.1128/AAC.42.8.1931
  • Ramon-Garcia S, Martin C, Ainsa JA, et al. Characterization of tetracycline resistance mediated by the efflux pump Tap from Mycobacterium fortuitum. J Antimicrob Chemother. 2006 Feb;57(2):252–259. doi: 10.1093/jac/dki436
  • Hurst-Hess KR, Phelps GA, Wilt LA, et al. Mab2780c, a TetV-like efflux pump, confers high-level spectinomycin resistance in mycobacterium abscessus. Tuberculosis (Edinb). 2023 Jan;138:102295. doi: 10.1016/j.tube.2022.102295
  • Gutierrez AV, Richard M, Roquet-Baneres F, et al. The TetR family transcription factor MAB_2299c regulates the expression of two distinct mmps-mmpl efflux pumps involved in cross-resistance to clofazimine and bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother. 2019 Oct;63(10). doi: 10.1128/AAC.01000-19
  • Lavollay M, Dubee V, Heym B, et al. In vitro activity of cefoxitin and imipenem against Mycobacterium abscessus complex. Clin Microbiol Infect. 2014 May;20(5):O297–300. doi: 10.1111/1469-0691.12405
  • Adjei MD, Heinze TM, Deck J, et al. Acetylation and nitrosation of ciprofloxacin by environmental strains of mycobacteria. Can J Microbiol. 2007 Jan;53(1):144–147. doi: 10.1139/w06-101
  • Ainsa JA, Perez E, Pelicic V, et al. Aminoglycoside 2’-N-acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2’)-Ic gene from Mycobacterium tuberculosis and the aac(2’)-id gene from Mycobacterium smegmatis. Mol Microbiol. 1997 Apr;24(2):431–441. doi: 10.1046/j.1365-2958.1997.3471717.x
  • Ripoll F, Pasek S, Schenowitz C, et al. Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PLoS One. 2009 Jun 19;4(6):e5660. doi: 10.1371/journal.pone.0005660
  • Wetzstein N, Kohl TA, Schultze TG, et al. Antimicrobial susceptibility and phylogenetic relations in a german cohort infected with Mycobacterium abscessus. J Clin Microbiol. 2020 Nov 18;58(12). doi: 10.1128/JCM.01813-20
  • Lipworth S, Hough N, Leach L, et al. Whole-genome sequencing for predicting clarithromycin resistance in Mycobacterium abscessus. Antimicrob Agents Chemother. 2019 Jan;63(1). doi: 10.1128/AAC.01204-18
  • Rominski A, Roditscheff A, Selchow P, et al. Intrinsic rifamycin resistance of Mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591. J Antimicrob Chemother. 2017 Feb;72(2):376–384. doi: 10.1093/jac/dkw466
  • Baysarowich J, Koteva K, Hughes DW, et al. Rifamycin antibiotic resistance by ADP-ribosylation: structure and diversity of arr. Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4886–4891. doi: 10.1073/pnas.0711939105
  • Griffith DE, Daley CL. Treatment of Mycobacterium abscessus pulmonary disease. Chest. 2022 Jan;161(1):64–75. doi: 10.1016/j.chest.2021.07.035
  • Luthra S, Rominski A, Sander P. The role of antibiotic-target-modifying and antibiotic-modifying enzymes in Mycobacterium abscessus drug resistance. Front Microbiol. 2018;9:2179. doi: 10.3389/fmicb.2018.02179
  • Nessar R, Cambau E, Reyrat JM, et al. Mycobacterium abscessus: a new antibiotic nightmare. J Antimicrob Chemother. 2012 Apr;67(4):810–818. doi: 10.1093/jac/dkr578
  • Wu ML, Aziz DB, Dartois V, et al. NTM drug discovery: status, gaps and the way forward. Drug Discov Today. 2018 Aug;23(8):1502–1519. doi: 10.1016/j.drudis.2018.04.001
  • Ruth MM, van Ingen J. New insights in the treatment of nontuberculous mycobacterial pulmonary disease. Future Microbiol. 2017 Oct;12(13):1109–1112. doi: 10.2217/fmb-2017-0144