46
Views
0
CrossRef citations to date
0
Altmetric
Review

Pulmonary gas exchange and ventilatory efficiency during exercise in health and diseases

, &
Received 27 Nov 2023, Accepted 17 Jun 2024, Published online: 27 Jun 2024

References

  • Forster HV, Haouzi P, Dempsey JA. Control of breathing during exercise. In: Terjung R, editor. Comprehensive physiology. Wiley; 2012. p. 743–777. doi: 10.1002/cphy.c100045
  • Wasserman K, Whipp BJ. Excercise physiology in health and disease. Am Rev Respir Dis. 1975 Aug;112(2):219–249. doi: 10.1164/arrd.1975.112.2.219
  • Dempsey JA, Wagner PD. Exercise-induced arterial hypoxemia. J Appl Physiol. 1999 Dec 1;87(6):1997–2006. doi: 10.1152/jappl.1999.87.6.1997
  • Zuntz N, Geppert J. eber die Natur der normalen Athemreize und den Ort ihrer Wirkung: Vorläufige Mittheilung. Pflüger Arch. 1886;38:337–338. doi: 10.1007/BF01654665
  • Johansson JE. Ueber die Einwirkung der Muskelthätigkeit auf die Athmung und die Herzthätigkeit 1. Skand Arch Für Physiol. 1893;5:20–66. doi: 10.1111/j.1748-1716.1894.tb00192.x
  • Krogh A, Lindhard J. The regulation of respiration and circulation during the initial stages of muscular work. J Physiol. 1913 Oct 17;47(1–2):112–136. doi: 10.1113/jphysiol.1913.sp001616
  • Asmussen E. Muscular exercise. In: Fenn WO, Rahn H, editors. Handbook of physiology, respiration. Washingto, D.C: American Physiological Society; 1965. p. 631–648.
  • Asmussen E, Johansen SH, Jørgensen M, et al. On the nervous factors controlling respiration and circulation during exercise experiments with curarization. Acta Physiol Scand. 1965 Mar 8;63(3):343–350. doi: 10.1111/j.1748-1716.1965.tb04073.x
  • Asmussen E, Nielsen M. Studies on the regulation of respiration in heavy work. Acta Physiol Scand. 1946 Jun 8;12(2–3):171–188. doi: 10.1111/j.1748-1716.1946.tb00377.x
  • Asmussen E, Nielsen M. Ventilatory response to CO 2 during work at normal and at low oxygen tensions. Acta Physiol Scand. 1957 Jan 8;39(1):27–35. doi: 10.1111/j.1748-1716.1957.tb01406.x
  • Asmussen E, Nielsen M. Experiments on nervous factors controlling respiration and circulation during exercise employing blocking of the blood flow. Acta Physiol Scand. 1964 Jan 8;60(1–2):103–111. doi: 10.1111/j.1748-1716.1964.tb02873.x
  • Asmussen E, Nielsen M, Wieth‐Pedersen G. Cortical or reflex control of respiration dnring muscular work? Acta Physiol Scand. 1943 Oct 8;6(2–3):168–175. doi: 10.1111/j.1748-1716.1943.tb02838.x
  • Thornton JM, Guz A, Murphy K, et al. Identification of higher brain centres that may encode the cardiorespiratory response to exercise in humans. J Physiol. 2001 Jun;533(3):823–836. doi: 10.1111/j.1469-7793.2001.00823.x
  • Fink GR, Adams L, Watson JD, et al. Hyperpnoea during and immediately after exercise in man: evidence of motor cortical involvement. J Physiol. 1995 Dec 15;489(3):663–675. doi: 10.1113/jphysiol.1995.sp021081
  • Ichiyama RM, Gilbert AB, Waldrop TG, et al. Changes in the exercise activation of diencephalic and brainstem cardiorespiratory areas after training. Brain Res. 2002 Aug;947(2):225–233. doi: 10.1016/S0006-8993(02)02929-3
  • Iwamoto GA, Wappel SM, Fox GM, et al. Identification of diencephalic and brainstem cardiorespiratory areas activated during exercise. Brain Res. 1996 Jul 8;726(1–2):109–122. doi: 10.1016/0006-8993(96)00303-4
  • Colebatch JG, Adams L, Murphy K, et al. Regional cerebral blood flow during volitional breathing in man. J Physiol. 1991 Nov;443(1):91–103. doi: 10.1113/jphysiol.1991.sp018824
  • Ramsay SC, Adams L, Murphy K, et al. Regional cerebral blood flow during volitional expiration in man: a comparison with volitional inspiration. J Physiol. 1993 Feb;461(1):85–101. doi: 10.1113/jphysiol.1993.sp019503
  • Williamson JW, McColl R, Mathews D, et al. Brain activation by central command during actual and imagined handgrip under hypnosis. J Appl Physiol. 2002 Mar 1;92(3):1317–1324. doi: 10.1152/japplphysiol.00939.2001
  • Williamson JW, Fadel PJ, Mitchell JH. New insights into central cardiovascular control during exercise in humans: a central command update. Exp Physiol. 2006 Jan 20;91(1):51–58. doi: 10.1113/expphysiol.2005.032037
  • King AB, Menon RS, Hachinski V, et al. Human forebrain activation by visceral stimuli. J Comp Neurol. 1999 Nov 1;413(4):572–582. doi: 10.1002/(SICI)1096-9861(19991101)413:4<572:AID-CNE6>3.0.CO;2-S
  • Basnayake SD, Hyam JA, Pereira EA, et al. Identifying cardiovascular neurocircuitry involved in the exercise pressor reflex in humans using functional neurosurgery. J Appl Physiol. 2011 Apr;110(4):881–891. doi: 10.1152/japplphysiol.00639.2010
  • Green AL, Paterson DJ. Identification of neurocircuitry controlling cardiovascular function in humans using functional neurosurgery: implications for exercise control. Exp Physiol. 2008 Sep 14;93(9):1022–1028. doi: 10.1113/expphysiol.2007.039461
  • Green AL, Wang S, Purvis S, et al. Identifying cardiorespiratory neurocircuitry involved in central command during exercise in humans. J Physiol. 2007 Jan 15;578(2):605–612. doi: 10.1113/jphysiol.2006.122549
  • Comroe JH, Schmidt CF. Reflexes from the limbs as a factor in the hyperpnea of muscular exercise. Am J PhysiolLegacy Content. 1943 Feb 1;138(3):536–547. doi: 10.1152/ajplegacy.1943.138.3.536
  • Kao FF, Cunningham DJ, Lloyd BB. An experimental study of the pathway involved in exercise hyperpnoea employing cross-circulation techniques. In: Cunningham DJC, editor. Regul Hum Respiration. Philadelphia, PA, USA: F.A. Davis Company; 1963.
  • Kaufman MP, Rybicki KJ, Waldrop TG, et al. Effect of ischemia on responses of group III and IV afferents to contraction. J Appl Physiol. 1984 Sep 1;57(3):644–650. doi: 10.1152/jappl.1984.57.3.644
  • Haouzi P, Chenuel B, Huszczuk A. Sensing vascular distension in skeletal muscle by slow conducting afferent fibers: neurophysiological basis and implication for respiratory control. J Appl Physiol. 2004 Feb;96(2):407–418. doi: 10.1152/japplphysiol.00597.2003
  • Huszczuk A JPOASENLWBWK. Venous return and ventilatory control. In: Whipp BJ, Wiberg DM, editors. Modeling and control of breathing. Oxford (UK): Elsevier; 1983. p. 78–85.
  • Amann M, Blain GM, Proctor LT, et al. Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans. J Appl Physiol. 2010 Oct;109(4):966–976. doi: 10.1152/japplphysiol.00462.2010
  • Banner N, Guz A, Heaton R, et al. Ventilatory and circulatory responses at the onset of exercise in man following heart or heart‐lung transplantation. J Physiol. 1988 May;399(1):437–449. doi: 10.1113/jphysiol.1988.sp017090
  • Ainsworth DM, Smith CA, Johnson BD, et al. Vagal modulation of respiratory muscle activity in awake dogs during exercise and hypercapnia. J Appl Physiol. 1992 Apr 1;72(4):1362–1367. doi: 10.1152/jappl.1992.72.4.1362
  • Forster HV, Pan LG, Bisgard GE, et al. Hyperpnea of exercise at various PIO2 in normal and carotid body-denervated ponies. J Appl Physiol. 1983 May 1;54(5):1387–1393. doi: 10.1152/jappl.1983.54.5.1387
  • Eldridge FL, Gill‐Kumar P. Central respiratory effects of carbon dioxide, and carotid sinus nerve and muscle afferents. J Physiol. 1980 Mar;300(1):75–87. doi: 10.1113/jphysiol.1980.sp013152
  • Waldrop TG, Mullins DC, Millhorn DE. Control of respiration by the hypothalamus and by feedback from contracting muscles in cats. Respir Physiol. 1986 Jun;64(3):317–328. doi: 10.1016/0034-5687(86)90125-8
  • Pan LG, Forster HV, Wurster RD, et al. Effect of multiple denervations on the exercise hyperpnea in awake ponies. J Appl Physiol. 1995 Jul 1;79(1):302–311. doi: 10.1152/jappl.1995.79.1.302
  • Yamamoto WS. Looking at ventilation as a signalling process. In: Dempsey J, Reid C, editors. Muscular exercise and the lung. Madison: University of Wisconsin Press; 1977. p. 137–149.
  • Kominami K, Nishijima H, Imahashi K, et al. Gas exchange threshold to guide exercise training intensity of older individuals during cardiac rehabilitation. Medicine. 2021 Oct 22;100(42):e27540. doi: 10.1097/MD.0000000000027540
  • Whipp BJ, Davis JA, Wasserman K. Ventilatory control of the ‘isocapnic buffering’ region in rapidly-incremental exercise. Respir Physiol. 1989 Jun;76(3):357–367. doi: 10.1016/0034-5687(89)90076-5
  • Lugliani R, Whipp BJ, Seard C, et al. Effect of bilateral carotid-body resection on ventilatory control at rest and during exercise in man. N Engl J Med. 1971 Nov 11;285(20):1105–1111. doi: 10.1056/NEJM197111112852002
  • Shea SA, Andres LP, Shannon DC, et al. Ventilatory responses to exercise in humans lacking ventilatory chemosensitivity. J Physiol. 1993 Aug;468(1):623–640. doi: 10.1113/jphysiol.1993.sp019792
  • Pan LG, Forster HV, Bisgard GE, et al. Hyperventilation in ponies at the onset of and during steady-state exercise. J Appl Physiol Respir Environ Exerc Physiol. 1983 May;54(5):1394–1402. doi: 10.1152/jappl.1983.54.5.1394
  • Paterson DJ. Potassium and ventilation in exercise. J Appl Physiol. 1992 Mar 1;72(3):811–820. doi: 10.1152/jappl.1992.72.3.811
  • Bongers B Vbmhhtt. Pediatric norms for cardiopulmonary exercise testing in relation to sex and age. 2014.
  • Goddard T, Sonnappa S. The role of cardiopulmonary exercise testing in evaluating children with exercise induced dyspnoea. Paediatr Respir Rev. 2021 Jun;38:24–32. doi: 10.1016/j.prrv.2020.08.002
  • Takken T, Bongers BC, van Brussel M, et al. Cardiopulmonary exercise testing in pediatrics. Ann Am Thorac Soc. 2017 Jul;14(Supplement_1):S123–8. doi: 10.1513/AnnalsATS.201611-912FR
  • Enghoff H. Bemerkungen zur frage des schadlichen raumes. In: Volumen Inefficax. Uppsala Lakarefoeren Fohr; 1938. p. 191–2918.
  • Forster HV., Pan LG. Breathing during exercise: demands, regulation, limitations. 1988. p. 257–276.
  • Whipp BJ, Ward SA, Wasserman K. Ventilatory responses to exercise and their control in man1, 2. Am Rev Respir Dis. 1984 Feb;129(2P2):S17–20. doi: 10.1164/arrd.1984.129.2P2.S17
  • Whipp B.J., Pardy R. Breathing durin exercise. In: Macklem P, Mead J, editors. Handbook of physiology respiratory (pulmonary mechanics). Washington: American Physiological Society; 1986. p. 605–629.
  • Neder JA, Berton DC, Arbex FF, et al. Physiological and clinical relevance of exercise ventilatory efficiency in COPD. Eur Respir J. 2017 Mar;49(3):1602036. doi: 10.1183/13993003.02036-2016
  • Wasserman K, Whipp BJ, Koyal SN, et al. Effect of carotid body resection on ventilatory and acid-base control during exercise. J Appl Physiol. 1975 Sep 1;39(3):354–358. doi: 10.1152/jappl.1975.39.3.354
  • Velez-Roa S, Ciarka A, Najem B, et al. Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation. 2004 Sep 7;110(10):1308–1312. doi: 10.1161/01.CIR.0000140724.90898.D3
  • Laveneziana P, Garcia G, Joureau B, et al. Dynamic respiratory mechanics and exertional dyspnoea in pulmonary arterial hypertension. Eur Respir J. 2013 Mar;41(3):578–587. doi: 10.1183/09031936.00223611
  • Wensel R, Georgiadou P, Francis DP, et al. Differential contribution of dead space ventilation and low arterial pCO2 to exercise hyperpnea in patients with chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 2004 Feb;93(3):318–323. doi: 10.1016/j.amjcard.2003.10.011
  • Petersson J, Glenny RW. Gas exchange and ventilation–perfusion relationships in the lung. Eur Respir J. 2014 Oct;44(4):1023–1041. doi: 10.1183/09031936.00037014
  • Robertson HT. Dead space: the physiology of wasted ventilation. Eur Respir J. 2015 Jun;45(6):1704–1716. doi: 10.1183/09031936.00137614
  • Neder JA, Arbex FF, Alencar MCN, et al. Exercise ventilatory inefficiency in mild to end-stage COPD. Eur Respir J. 2015 Feb;45(2):377–387. doi: 10.1183/09031936.00135514
  • Whipp BJ, Ward SA. Cardiopulmonary coupling during exercise. J Exp Biol. 1982 Oct 1;100(1):175–193. doi: 10.1242/jeb.100.1.175
  • Naeije R, Faoro V. The great breathlessness of cardiopulmonary diseases. Eur Respir J. 2018 Feb 7;51(2):1702517. doi: 10.1183/13993003.02517-2017
  • Parazzi PLF, Marson FA de L, Ribeiro MAG de O, et al. Ventilatory efficiency in children and adolescents: a systematic review. Dis Markers. 2015;2015:1–10. doi: 10.1155/2015/546891
  • Nagano Y, Baba R, Kuraishi K, et al. Ventilatory control during exercise in normal children. Pediatr Res. 1998 May;43(5):704–707. doi: 10.1203/00006450-199805000-00021
  • Tenney SM, Miller RM. Dead space ventilation in old age. J Appl Physiol. 1956 Nov;9(3):321–327. doi: 10.1152/jappl.1956.9.3.321
  • Baba R, Nagashima M, Goto M, et al. Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J Am Coll Cardiol. 1996 Nov;28(6):1567–1572. doi: 10.1016/S0735-1097(96)00412-3
  • McClaran SR, Babcock MA, Pegelow DF, et al. Longitudinal effects of aging on lung function at rest and exercise in healthy active fit elderly adults. J Appl Physiol. 1995 May 1;78(5):1957–1968. doi: 10.1152/jappl.1995.78.5.1957
  • Guenette JA, Chin RC, Cheng S, et al. Mechanisms of exercise intolerance in global initiative for chronic obstructive lung disease grade 1 COPD. Eur Respir J. 2014 Nov;44(5):1177–1187. doi: 10.1183/09031936.00034714
  • Faisal A, Alghamdi BJ, Ciavaglia CE, et al. Common mechanisms of dyspnea in chronic interstitial and obstructive lung disorders. Am J Respir Crit Care Med. 2016 Feb 1;193(3):299–309. doi: 10.1164/rccm.201504-0841OC
  • Hansen JE, Wasserman K. Pathophysiology of activity limitation in patients with interstitial lung disease. Chest. 1996 Jun;109(6):1566–1576. doi: 10.1378/chest.109.6.1566
  • Arena R, Myers J, Aslam SS, et al. Peak VO2 and VE/VCO2 slope in patients with heart failure: a prognostic comparison. Am Heart J. 2004 Feb;147(2):354–360. doi: 10.1016/j.ahj.2003.07.014
  • Elbehairy AF, Faisal A, Guenette JA, et al. Resting physiological correlates of reduced exercise capacity in smokers with mild airway obstruction. COPD: J Chronic Obstructive Pulmonary Dis. 2017 May 4;14(3):267–275. doi: 10.1080/15412555.2017.1281901
  • Ewert R, Ittermann T, Habedank D, et al. Prognostic value of cardiopulmonary exercise testing in patients with systemic sclerosis. BMC Pulm Med. 2019 Dec 29;19(1):230. doi: 10.1186/s12890-019-1003-7
  • Wensel R, Francis DP, Meyer FJ, et al. Incremental prognostic value of cardiopulmonary exercise testing and resting haemodynamics in pulmonary arterial hypertension. Int J Cardiol. 2013 Aug;167(4):1193–1198. doi: 10.1016/j.ijcard.2012.03.135
  • Neder JA, Berton DC, Müller P de T, et al. Ventilatory inefficiency and exertional dyspnea in early chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2017 Jul;14(Supplement_1):S22–9. doi: 10.1513/AnnalsATS.201612-1033FR
  • Ponikowski P, Chua TP, Anker SD, et al. Peripheral chemoreceptor hypersensitivity. Circulation. 2001 Jul 31;104(5):544–549. doi: 10.1161/hc3101.093699
  • Sue DY. Excess ventilation during exercise and prognosis in chronic heart failure. Am J Respir Crit Care Med. 2011 May 15;183(10):1302–1310. doi: 10.1164/rccm.201006-0965CI
  • Witte KK, Clark AL. Why does chronic heart failure cause breathlessness and fatigue? Prog Cardiovasc Dis. 2007 Mar;49(5):366–384. doi: 10.1016/j.pcad.2006.10.003
  • Wasserman K, Zhang YY, Gitt A, et al. Lung function and exercise gas exchange in chronic heart failure. Circulation. 1997 Oct 7;96(7):2221–2227. doi: 10.1161/01.CIR.96.7.2221
  • Mancini DM, Eisen H, Kussmaul W, et al. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 1991 Mar;83(3):778–786. doi: 10.1161/01.CIR.83.3.778
  • Guazzi M, Reina G, Tumminello G, et al. Exercise ventilation inefficiency and cardiovascular mortality in heart failure: the critical independent prognostic value of the arterial CO2 partial pressure. Eur Heart J. 2005 Mar 1;26(5):472–480. doi: 10.1093/eurheartj/ehi060
  • Arena R, Myers J, Guazzi M. The clinical and research applications of aerobic capacity and ventilatory efficiency in heart failure: an evidence-based review. Heart Fail Rev. 2008 Jun 7;13(2):245–269. doi: 10.1007/s10741-007-9067-5
  • Neder JA, Phillips DB, O’Donnell DE, et al. Excess ventilation and exertional dyspnoea in heart failure and pulmonary hypertension. Eur Respir J. 2022 Nov;60(5):2200144. doi: 10.1183/13993003.00144-2022
  • Weatherald J, Boucly A, Montani D, et al. Gas exchange and ventilatory efficiency during exercise in pulmonary vascular diseases. Arch Bronconeumol. 2020 Sep;56(9):578–585. doi: 10.1016/j.arbres.2019.12.030
  • Raza F, Dharmavaram N, Hess T, et al. Distinguishing exercise intolerance in early‐stage pulmonary hypertension with invasive exercise hemodynamics: rest V E/V CO 2 and ETCO 2 identify pulmonary vascular disease. Clin Cardiol. 2022 Jul 14;45(7):742–751. doi: 10.1002/clc.23831
  • Sun XG, Hansen JE, Oudiz RJ, et al. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation. 2001 Jul 24;104(4):429–435. doi: 10.1161/hc2901.093198
  • Weatherald J, Philipenko B, Montani D, et al. Ventilatory efficiency in pulmonary vascular diseases. Eur Respir Rev. 2021 Sep 30;30(161):200214. doi: 10.1183/16000617.0214-2020
  • Deboeck G, Niset G, Lamotte M, et al. Exercise testing in pulmonary arterial hypertension and in chronic heart failure. Eur Respir J. 2004 May;23(5):747–751. doi: 10.1183/09031936.04.00111904
  • Treptow E, Oliveira MF, Soares A, et al. Cerebral microvascular blood flow and CO 2 reactivity in pulmonary arterial hypertension. Respir Physiol Neurobiol. 2016 Nov;233:60–65. doi: 10.1016/j.resp.2016.08.001
  • Malenfant S, Brassard P, Paquette M, et al. Compromised cerebrovascular regulation and cerebral oxygenation in pulmonary arterial hypertension. J Am Heart Assoc. 2017 Oct 11;6(10). doi: 10.1161/JAHA.117.006126
  • Naeije R, van de Borne P. Clinical relevance of autonomic nervous system disturbances in pulmonary arterial hypertension. Eur Respir J. 2009 Oct 1;34(4):792–794. doi: 10.1183/09031936.00091609
  • Wensel R, Jilek C, Dorr M, et al. Impaired cardiac autonomic control relates to disease severity in pulmonary hypertension. Eur Respir J. 2009 Oct 1;34(4):895–901. doi: 10.1183/09031936.00145708
  • Mainguy V, Maltais F, Saey D, et al. Effects of a rehabilitation program on skeletal muscle function in idiopathic pulmonary arterial hypertension. J Cardiopulm Rehabil Prev. 2010 Sep;30(5):319–323. doi: 10.1097/HCR.0b013e3181d6f962
  • Linden RJ. Reflexes from receptors in the heart. Cardiol. 1976;61(1):7–30. doi: 10.1159/000169788
  • Barbosa PB, Ferreira EM V., Arakaki JSO, et al. Kinetics of skeletal muscle O2 delivery and utilization at the onset of heavy-intensity exercise in pulmonary arterial hypertension. Eur J Appl Physiol. 2011 Aug 12;111(8):1851–1861. doi: 10.1007/s00421-010-1799-6
  • Fukui S, Ogo T, Goto Y, et al. Exercise intolerance and ventilatory inefficiency improve early after balloon pulmonary angioplasty in patients with inoperable chronic thromboembolic pulmonary hypertension. Int J Cardiol. 2015 Feb;180:66–68. doi: 10.1016/j.ijcard.2014.11.187
  • Zhai Z, Murphy K, Tighe H, et al. Differences in ventilatory inefficiency between pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Chest. 2011 Nov;140(5):1284–1291. doi: 10.1378/chest.10-3357
  • Godinas L, Sattler C, Lau EM, et al. Dead-space ventilation is linked to exercise capacity and survival in distal chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant. 2017 Nov;36(11):1234–1242. doi: 10.1016/j.healun.2017.05.024
  • Mélot C, Naeije R. Pulmonary vascular diseases. In: Comprehensive physiology. Wiley; 2011. p. 593–619.
  • Farina S, Correale M, Bruno N, et al. The role of cardiopulmonary exercise tests in pulmonary arterial hypertension. Eur Respir Rev. 2018 Jun 30;27(148):170134. doi: 10.1183/16000617.0134-2017
  • McLaughlin V, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension. Circulation. 2009 Apr 28;119(16):2250–2294. doi: 10.1161/CIRCULATIONAHA.109.192230
  • Correale M, Tricarico L, Ferraretti A, et al. Cardiopulmonary exercise test predicts right heart catheterization. Eur J Clin Invest. 2017 Dec 17;47(12). doi: 10.1111/eci.12851
  • Chin RC, Guenette JA, Cheng S, et al. Does the respiratory system limit exercise in mild chronic obstructive pulmonary disease? Am J Respir Crit Care Med. 2013 Jun 15;187(12):1315–1323. doi: 10.1164/rccm.201211-1970OC
  • O’Donnell DE, Maltais F, Porszasz J, et al. The continuum of physiological impairment during treadmill walking in patients with mild-to-moderate copd: patient characterization phase of a randomized clinical trial. PLOS ONE. 2014 May 1;9(5):e96574. doi: 10.1371/journal.pone.0096574
  • Elbehairy AF, Raghavan N, Cheng S, et al. Physiologic characterization of the chronic bronchitis phenotype in GOLD grade IB COPD. Chest. 2015 May;147(5):1235–1245. doi: 10.1378/chest.14-1491
  • Elbehairy AF, Ciavaglia CE, Webb KA, et al. Pulmonary gas exchange abnormalities in mild chronic obstructive pulmonary disease. Implications for dyspnea and exercise intolerance. Am J Respir Crit Care Med. 2015 Jun 15;191(12):1384–1394. doi: 10.1164/rccm.201501-0157OC
  • Neder JA, O’Donnell CDJ, Cory J, et al. Ventilation distribution heterogeneity at rest as a marker of exercise impairment in mild-to-advanced COPD. COPD: J Chronic Obstructive Pulmonary Dis. 2015 May 4;12(3):252–259. doi: 10.3109/15412555.2014.948997
  • Barbera JA, Roca J, Ramirez J, et al. Gas exchange during exercise in mild chronic obstructive pulmonary disease: correlation with lung structure. Am Rev Respir Dis. 1991 Sep;144(3_pt_1):520–525. doi: 10.1164/ajrccm/144.3_Pt_1.520
  • Hueper K, Vogel-Claussen J, Parikh MA, et al. Pulmonary microvascular blood flow in mild chronic obstructive pulmonary disease and emphysema. The MESA COPD study. Am J Respir Crit Care Med. 2015 Sep 1;192(5):570–580. doi: 10.1164/rccm.201411-2120OC
  • Crisafulli E, Alfieri V, Silva M, et al. Relationships between emphysema and airways metrics at High-Resolution Computed Tomography (HRCT) and ventilatory response to exercise in mild to moderate COPD patients. Respir med. 2016 Aug;117:207–214. doi: 10.1016/j.rmed.2016.06.016
  • Boutou AK, Nair A, Douraghi-Zadeh D, et al. A combined pulmonary function and emphysema score prognostic index for staging in chronic obstructive pulmonary disease. PLOS ONE. 2014 Oct 24;9(10):e111109. doi: 10.1371/journal.pone.0111109
  • O’Donnell DE, Laveneziana P, Webb K, et al. Chronic obstructive pulmonary disease. Clin Chest Med. 2014 Mar;35(1):51–69. doi: 10.1016/j.ccm.2013.09.008
  • Schaeffer MR, Ryerson CJ, Ramsook AH, et al. Neurophysiological mechanisms of exertional dyspnoea in fibrotic interstitial lung disease. Eur Respir J. 2018 Jan 18;51(1):1701726. doi: 10.1183/13993003.01726-2017
  • Agustí AGN, Roca J, Gea J, et al. Mechanisms of gas-exchange impairment in idiopathic pulmonary fibrosis. Am Rev Respir Dis. 1991 Feb;143(2):219–225. doi: 10.1164/ajrccm/143.2.219
  • Rosato E, Romaniello A, Magrì D, et al. Exercise tolerance in systemic sclerosis patients without pulmonary impairment: correlation with clinical variables. Clin Exp Rheumatol. 2014;32(6 Suppl 86):S-103–8.
  • Rosato E, Leodori G, Gigante A, et al. Reduced ventilatory efficiency during exercise predicts major vascular complications and mortality for interstitial lung disease in systemic sclerosis. Clin Exp Rheumatol. 2020;38 Suppl 125(3):85–91.
  • Heinicke K, Taivassalo T, Wyrick P, et al. Exertional dyspnea in mitochondrial myopathy: clinical features and physiological mechanisms. Am J Physiol Regul Integr Comp Physiol. 2011 Oct;301(4):R873–84. doi: 10.1152/ajpregu.00001.2011
  • Nicholson TT, Barry PJ, Waterhouse DF, et al. Relationship between pulmonary hyperinflation and dyspnoea severity during acute exacerbations of cystic fibrosis. Respirology. 2017 Jan 11;22(1):141–148. doi: 10.1111/resp.12885
  • Regamey N, Jeffery PK, Alton Ewfw, et al. Airway remodelling and its relationship to inflammation in cystic fibrosis. Thorax. 2011 Jul 1;66(7):624–629. doi: 10.1136/thx.2009.134106
  • Stoltz DA, Meyerholz DK, Welsh MJ, et al. Origins of cystic fibrosis lung disease. N Engl J Med. 2015 Jan 22;372(4):351–362. doi: 10.1056/NEJMra1300109
  • Laveneziana P, Palange P. Ventilatory efficiency and its clinical and prognostic value in adults with cystic fibrosis. Eur Respir Rev. 2021 Dec 31;30(162):200395. doi: 10.1183/16000617.0395-2020
  • Sun XG, Hansen JE, Garatachea N, et al. Ventilatory efficiency during exercise in healthy subjects. Am J Respir Crit Care Med. 2002 Dec 1;166(11):1443–1448. doi: 10.1164/rccm.2202033
  • Cardús J, Burgos F, Diaz O, et al. Increase in pulmonary ventilation–perfusion inequality with age in healthy individuals. Am J Respir Crit Care Med. 1997 Aug 1;156(2):648–653. doi: 10.1164/ajrccm.156.2.9606016
  • Raine JM, Bishop JM. A-a difference in O 2 tension and physiological dead space in normal man. J Appl Physiol. 1963 Mar 1;18(2):284–288. doi: 10.1152/jappl.1963.18.2.284
  • Johnson BD, Dempsey JA. 5 demand vs. Capacity in the aging pulmonary system. Exerc Sport Sci Rev. 1991;19(1):171–210. doi: 10.1249/00003677-199101000-00005
  • Hasler ED, Saxer S, Schneider SR, et al. Effect of breathing oxygen-enriched air on exercise performance in patients with chronic obstructive pulmonary disease: randomized, placebo-controlled, cross-over trial. Respiration. 2020;99(3):213–224. doi: 10.1159/000505819
  • Palange P. Lighter than air: heliox breathing improves exercise tolerance in COPD. Eur Respir Rev. 2010 Mar 1;19(115):1–3. doi: 10.1183/09059180.00000210
  • Phillips DB, Brotto AR, Ross BA, et al. Inhaled nitric oxide improves ventilatory efficiency and exercise capacity in patients with mild COPD: arandomized‐control cross‐over trial. J Physiol. 2021 Mar 25;599(5):1665–1683. doi: 10.1113/JP280913

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.