502
Views
0
CrossRef citations to date
0
Altmetric
Special issue dedicated to 130th anniversary of Vladimir I. Smirnov

Asymptotic behaviour for the fractional heat equation in the Euclidean space

Pages 1216-1231 | Received 03 Jul 2017, Accepted 14 Oct 2017, Published online: 06 Nov 2017

References

  • Landkof NS. Foundations of modern potential theory. Vol. 180, Die Grundlehren der mathematischen Wissenschaften. New York (NY): Springer-Verlag; 1972.
  • Stein EM. Singular integrals and differentiability properties of functions. Vol. 30, Princeton mathematical series. Princeton (NJ): Princeton University Press; 1970.
  • Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math. 2012;136(5):521–573.
  • Applebaum D. Lévy processes and stochastic calculus. 2nd ed. Vol. 116, Cambridge studies in advanced mathematics. Cambridge: Cambridge University Press; 2009.
  • Bertoin J. Lévy processes. Vol. 121, Cambridge tracts in mathematics. Cambridge: Cambridge University Press; 1996.
  • Bonforte M, Sire Y, Vázquez JL. Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 2017;153:142–168.
  • Blumenthal RM, Getoor RK. Some theorems on stable processes. Trans Amer Math Soc. 1960;95:263–273.
  • Bogdan K, Jakubowski T. Estimates of the heat kernel of fractional Laplacian perturbed by gradient operators. Commun Math Phys. 2007;271(1):179–198.
  • Chen Z-Q, Kumagai T. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab Theory Rel Fields. 2008;140:277–317.
  • Metzler R, Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep. 2000;339:1–77.
  • Valdinoci E. From the long jump random walk to the fractional Laplacian. Bol Soc Esp Mat Apl. 2009;49:33–44.
  • Barrios B, Peral I, Soria F, et al. A Widder’s type theorem for the heat equation with nonlocal diffusion. Arch Ration Mech. Anal. 2014;213(2):629–650.
  • Vázquez JL. Asymptotic behaviour methods for the heat equation. Convergence to the Gaussian. arXiv:1706.10034v2 [math.AP].
  • Caffarelli LA, Silvestre L. An extension problem related to the fractional Laplacian. Comm Partial Differ Equ. 2007;32(7–9):1245–1260.
  • Kolokoltsov VN. Symmetric stable laws and stable-like jump-diffusions. Lond Math Soc. 2000;80:725–768.
  • Aleksandrov AD. Certain estimates for the Dirichlet problem. Sov Math Dokl. 1960;1:1151–1154.
  • Serrin J. A symmetry problem in potential theory. Arch Ration Mech Anal. 1971;43:304–318.
  • Vázquez JL. The porous medium equation. Mathematical theory. Oxford mathematical monographs. Oxford: The Clarendon Press, Oxford University Press; 2007.
  • Vázquez JL. Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J Eur Math Soc. 2014;16(4):769–803.
  • Pruitt WE, Taylor SJ. The potential kernel and hitting probabilities for the general stable process in RN. Trans Amer Math Soc. 1969;146:299–321.
  • Vázquez JL, de Pablo A, Quirós F, et al. Classical solutions and higher regularity for nonlinear fractional diffusion equations. J Eur Math Soc. 2017;19(7):1949–1975.
  • Biler P, Karch G. Generalized Fokker-Planck equations and convergence to their equilibria. In: Evolution equations (Warsaw, 2001). Vol. 60, Banach Center Publications. Warsaw: Polish Academy of Sciences; 2003. p. 307–318.
  • Schertzer D, Larchevèque M, Duan J, et al. Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-Gaussian Lévy stable noises. J Math Phys. 2001;42:200–212.
  • Gentil I, Imbert C. The Lévy-Fokker-Planck equation: φ-entropies and convergence to equilibrium. Asymptot Anal. 2008;59(3–4):125–138.
  • Biler P, Karch G, Woyczynski WA. Asymptotics for multifractal conservation laws. Studia Math. 1999;135:231–252.
  • Biler P, Karch G, Woyczynski WA. Critical nonlinearity exponent and selfsimilar asymptotics for Lévy conservation laws. Ann Inst H Poincaré Anal Non Linéaire. 2001;18:613–637.
  • Chafaï D. Entropies, convexity, and functional inequalities: on φ-entropies and φ-Sobolev inequalities. J Math Kyoto Univ. 2004;44(2):325–363.
  • Tristani I. Fractional Fokker-Planck equation. Commun Math Sci. 2015;13(5):1243–1260.
  • Toscani G. The fractional Fisher information and the central limit theorem for stable laws. Ric Mat. 2016;65(1):71–91.
  • Vázquez JL. The mathematical theories of diffusion. Nonlinear and fractional diffusion. Springer lecture notes in mathematics, to appear. Forthcoming.
  • De Pablo A, Quirós F, Rodríguez A, et al. A fractional porous medium equation. Adv Math. 2011;226(2):1378–1409.
  • de Pablo A, Quirós F, Rodríguez A, et al. A general fractional porous medium equation. Comm Pure Applied Math. 2012;65:1242–1284.
  • Caffarelli LA, Vázquez JL. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Cont Dyn Syst-A. 2011;29(4):1393–1404.
  • Carrillo JA, Huang Y, Santos MC, et al. Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure. J Differ Equ. 2015;258(3):736–763.
  • Kemppainen J, Siljander J, Zacher R. Representation of solutions and large-time behavior for fully nonlocal diffusion equations. J Differ Equ. 2017;263:149–201.
  • Vergara V, Zacher R. Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods. SIAM J Math Anal. 2015;47(1):210–239.
  • Alibaud N. Entropy formulation for fractal conservation laws. J Evol Equ. 2007;7:145–175.
  • Alibaud N, Imbert C, Karch G. Asymptotic properties of entropy solutions to fractal Burgers equation. SIAM J Math Anal. 2010;42:354–376.
  • Cifani S, Jakobsen ER. Entropy solution theory for fractional degenerate convection-diffusion equations. Ann Inst H Poincaré Anal Non Linéaire. 2011;28(3):413–441.
  • Droniou J, Imbert C. Fractal first-order partial differential equations. Arch Ration Mech Anal. 2006;182(2):299–331.
  • Caffarelli L, Vasseur A. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann Math. 2010;171:1903–1930.
  • Constantin P. Nonlocal nonlinear advection-diffusion equations. Chin Ann Math Ser B. 2017;38(1):281–292.
  • Córdoba A, Córdoba D. A maximum principle applied to quasi-geostrophic equations. Comm Math Phys. 2004;249:511–528.
  • Escudero C. The fractional Keller--Segel model. Nonlinearity. 2006;12:2909–2918.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.