442
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

On normal forms of complex points of small C2-perturbations of real 4-manifolds embedded in a complex 3-manifold

Pages 376-436 | Received 24 Jun 2019, Accepted 23 Jan 2020, Published online: 10 Feb 2020

References

  • Bishop E. Differential manifolds in complex Euclidean space. Duke Math J. 1965;32:1–21. doi: 10.1215/S0012-7094-65-03201-1
  • Kenig CE, Webster SM. The local hull of holomorphy of a surface in the space of two complex variables. Invent Math. 1982;67(1):1–21. doi: 10.1007/BF01393370
  • Moser JK, Webster SM. Normal forms for real surfaces in C2 near complex tangents and hyperbolic surface transformations. Acta Math. 1983;150(3–4):255–296. doi: 10.1007/BF02392973
  • Burcea V. A normal form for a real 2-codimensional submanifold in CN+1 near a CR singularity. Adv Math. 2013;243:262–295. doi: 10.1016/j.aim.2013.04.018
  • Coffman A. CR singularities of real fourfolds in C3. Illinois J Math. 2009;53(3):939–981. doi: 10.1215/ijm/1286212924
  • Gong X. Real analytic submanifolds under unimodular transformations. Proc Amer Math Soc. 1995;123(1):191–200. doi: 10.1090/S0002-9939-1995-1231299-8
  • Gong X, Stolovitch L. Real submanifolds of maximum complex tangent space at a CR singular point I. Invent Math. 2016;206(1):293–377. doi: 10.1007/s00222-016-0654-8
  • Lai HF. Characteristic classes of real manifolds immersed in complex manifolds. Trans AMS. 1972;172:1–33. doi: 10.1090/S0002-9947-1972-0314066-8
  • Forstnerič F. Complex tangents of real surfaces in complex surfaces. Duke Math J. 1992;67(2):353–376. doi: 10.1215/S0012-7094-92-06713-5
  • Slapar M. Cancelling complex points in codimension 2. Bull Aus Math Soc. 2013;88(1):64–69. doi: 10.1017/S0004972712000652
  • Slapar M. Modeling complex points up to isotopy. J Geom Anal. 2013;23(4):1932–1943. doi: 10.1007/s12220-012-9312-6
  • Slapar M. On complex points of codimension 2 submanifolds. J Geom Anal. 2016;26(1):206–219. doi: 10.1007/s12220-014-9545-7
  • Arnold VI. Geometric methods in the theory or ordinary differential equations. New York (NY): Springer-Verlag; 1988.
  • Izotov GE. Simultaneous reduction of a quadratic and a Hermitian form. Izv Vysš Učebn Zaved Matematika. 1957;1:143–159.
  • Slapar M, Starčič T. On normal forms of complex points of codimension 2 submanifolds. J Math Anal Appl. 2018;461(2):1308–1326. doi: 10.1016/j.jmaa.2018.01.039
  • Hong Y. A canonical form for Hermitian matrices under complex orthogonal congruence. SIAM J Matrix Anal Appl. 1989;10(2):233–243. doi: 10.1137/0610018
  • Markus AS, Parilis EÉ. The change of the Jordan structure of a matrix under small perturbations. Mat Issled. 1980;54:98–109. English translation: Linear Algebra Appl. 1983;54:139–152.
  • Edelman E, Elmroth E, Kågström B. A geometric approach to perturbation theory of matrices and matrix pencils. Part II: A stratification enhanced staircase algorithm. SIAM J Matrix Anal Appl. 1999;20:667–699. doi: 10.1137/S0895479896310184
  • Elmroth E, Johansson P, Kågström B. Computation and presentation of graph displaying closure hierarchies of Jordan and Kronecker structures. Numer Linear Algebra Appl. 2001;8:381–399. doi: 10.1002/nla.253
  • Dmytryshyn AR, Futorny V, Kågström B, et al. Change of the congruence canonical form of 2-by-2 and 3-by-3 matrices under perturbations and bundles of matrices under congruence. Linear Algebra Appl. 2015;469:305–334. doi: 10.1016/j.laa.2014.11.004
  • Dmytryshyn AR, Futorny V, Sergeichuk VV. Miniversal deformations of matrices of bilinear forms. Liner Algebra Appl. 2012;436:2670–2700. doi: 10.1016/j.laa.2011.11.010
  • Futorny V, Klimenko L, Sergeichuk VV. Change of the ∗-congruence canonical form of 2-by-2 matrices under perturbations. Electr J Lin Alg. 2014;27:146–154.
  • Guralnick R. Similarity of holomorphic matrices. Linear Algebra Appl. 1988;99:85–96. doi: 10.1016/0024-3795(88)90126-7
  • Leiterer J. On the similarity of holomorphic matrices. J Geom Anal. 2018. doi:10.1007/s12220-018-0008-4
  • Boothby WM. An introduction to differentiable manifolds and riemannian geometry. New York (NY): Academic Press; 1975.
  • Huang X, Yin W. Flattening of CR singular points and analyticity of local hull of holomorphy I. Math Ann. 2016;365(1–2):381–399. doi: 10.1007/s00208-015-1228-6
  • Huang X, Yin W. Flattening of CR singular points and analyticity of local hull of holomorphy II. Adv Math. 2017;308:1009–1073. doi: 10.1016/j.aim.2016.12.008
  • Fang H, Huang X. Flattening a non-degenerate CR singular point of real codimension two. arXiv:1703.09135.
  • Horn RA, Johnson CR. Matrix analysis. Cambridge: Cambridge University Press; 1990.
  • Bochnak J, Coste M, Roy MF. Real algebraic geometry. Berlin: Springer-Verlag; 1988.
  • Tauvel P, Yu RWT. Lie algebras and algebraic groups. Berlin: Springer-Verlag; 2005.
  • Harris J. Algebraic geometry a first course. New York (NY): Springer-Verlag; 1992.
  • Hubbard JH, Hubbard BB. Vector calculus, linear algebra, and differential forms: a unified approach. Upper Saddle River (NJ): Prentice Hall; 1999.
  • Coffman A. CR singular immersions of complex projective spaces. Beiträge Algebra Geom. 2002;43:451–477.