164
Views
1
CrossRef citations to date
0
Altmetric
Articles

Chirality notions and electromagnetic scattering: a mini review

ORCID Icon
Pages 740-772 | Received 31 Mar 2021, Accepted 03 Jul 2021, Published online: 22 Jul 2021

References

  • Veselago V. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov Phys Uspekhi. 1968;10:509–514. (the original paper, in Russian, appeared in Uspekhi Fiz Nauk. 1964;92:517–526).
  • Hecht E. Optics. 4th ed. San Francisco (CA): Addison Wesley; 2002.
  • Stöhr J, Siegmann HC. Magnetism: from fundamentals to nanoscale dynamics. Berlin: Springer-Verlag; 2006.
  • Pasteur L. Sur les relations qui peuvent exister entre la forme cristalline, la composante chimique et le sens de la polarisation rotatoire. Ann Chim Phys. 1848;24:442–459.
  • Prelog V. Chirality in chemistry. Nobel Lecture. 1975. Available from: http://nobelprize.org/nobel_prizes/chemistry/laureates/1975/prelog-lecture.pdf.
  • Mun J, Kim M, Yang Y, et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light Sci Appl. 2020;9:139.
  • Lindell IV, Sihvola AH, Kurkijarvi J, et al. Lindman: the last Hertzian, and a Harbinger of electromagnetic chirality. IEEE Antennas Propag Mag. 1992;34:24–30.
  • Caloz C, Sihvola A. Electromagnetic chirality, part 1: the microscopic perspective & part 2: the macroscopic perspective. IEEE Antennas Propag Mag. 2020;62:58–71. & 82–98.
  • Lakhtakia A, Varadan VK, Varadan VV. Time-harmonic electromagnetic fields in chiral media. Berlin: Springer-Verlag; 1989. (Lecture Notes in Physics no. 335).
  • Lakhtakia A. Beltrami fields in chiral media. Singapore: World Scientific; 1994.
  • Lindell IV, Sihvola AH, Tretyakov SA, et al. Electromagnetic waves in chiral and bi-isotropic media. Boston (MA): Artech House; 1994.
  • Asadchy VS, Daz-Rubio A, Tretyakov SA. Bianisotropic metasurfaces: physics and applications. Nanophotonics. 2018;7:1069–1094.
  • Engheta N, Jaggard DL. Electromagnetic chirality and its applications. IEEE Antennas Propag Soc Newslett. 1988;30:6–12.
  • Jaggard DL, Engheta N. Chirality in electrodynamics: modeling and applications. In: Bertoni HL, Felsen LB, editors. Directions in electromagnetic wave modeling. New York (NY): Plenum; 1991. p. 485–493.
  • Lakhtakia A. A mini-review on isotropic chiral mediums. In: Singh, ON, Lakhtakia A, editors. Electromagnetic fields in unconventional materials and structures, New York (NY): Wiley; 2000. p. 125–149.
  • Alpeggiani F, Bliokh KY, Nori F, et al. Electromagnetic helicity in complex media. Phys Rev Lett. 2018;120:243605.
  • Bliokh KY, Bekshaev AY, Nori F. Optical momentum, spin, and angular momentum in dispersive media. Phys Rev Lett. 2017;119:073901.
  • Bliokh KY, Bekshaev AY, Nori F. Optical momentum and angular momentum in complex media: from the Abraham-Minkowski debate to unusual properties of surface plasmon-polaritons. New J Phys. 2017;19:123014.
  • Bliokh KY, Leykam D, Lein M, et al. Topological non-Hermitian origin of surface Maxwell waves. Nat Commun. 2019;10:580.
  • Bliokh KY, Nori F. Characterizing optical chirality. Phys Rev A. 2011;83:021803 (R).
  • Bliokh KY, Nori F. Transverse and longitudinal angular momenta of light. Phys Rep. 2015;592:1–38.
  • Bliokh KY, Rodrguez-Fortuño FJ, Nori F, et al. Spin-orbit interactions of light. Nat Photonics. 2015;9:796–808.
  • Bliokh KY, Smirnova D, Nori F. Quantum spin Hall effect of light. Science. 2015;348:1448–1451.
  • Dressel J, Bliokh KY, Nori F. Spacetime algebra as a powerful tool for electromagnetism. Phys Rep. 2015;589:1–71.
  • Roach GF, Stratis IG, Yannacopoulos AN. Mathematical analysis of deterministic and stochastic problems in complex media electromagnetics. Princeton (NJ): Princeton University Press; 2012. (Princeton Series in Applied Mathematics).
  • Cessenat M. Mathematical methods in electromagnetics, linear theory and applications. Singapore: World Scientific Publishing; 1996. (Series on Advances in Mathematics for Applied Sciences – Vol. 41).
  • Monk P. Finite element methods for Maxwell's equations. Oxford: Clarendon Press; 2003.
  • Gustafsson M. Wave splitting in direct and inverse scattering problems [PhD Thesis]. Lund University, 2000. Available from: https://lup.lub.lu.se/search/ws/files/4781915/1049116.pdf.
  • Ioannidis A, Kristensson G, Stratis IG. On the well-posedness of the Maxwell system for linear bianisotropic media. SIAM J Math Anal. 2012;44:2459–2473.
  • Boulmezaoud TZ, Amari T. On the existence of non-linear force-free fields in three-dimensional domains. Z Angew Math Phys. 2000;51:942–967.
  • Vitkin IA, Hoskinson E. Polarization studies in multiply scattering chiral media. Opt Eng. 2000;39:353–362.
  • Athanasiadis C, Costakis G, Stratis IG. Electromagnetic scattering by a homogeneous chiral obstacle in a chiral environment. IMA J Appl Math. 2000;64:245–258.
  • Kampia RD, Lakhtakia A. Bruggeman model for chiral particulate composites. J Phys D Appl Phys. 1992;25:1390–1394.
  • Shanker B. The extended Bruggeman approach for chiral-in-chiral mixtures. J Phys D Appl Phys. 1996;29:281–288.
  • Urry DW, Krivacic J. Differential scatter of left and right circularly polarized light by optically active particulate systems. Proc Nat Acad Sci USA. 1970;65:845–852.
  • NASA Astrobiolgy Institute. Available from: https://astrobiology.nasa.gov/nai/articles/2001/10/19/titan-biological-birthplace/index.html.
  • Ammari H, Nédélec J-C. Time-harmonic electromagnetic fields in chiral media. In: Meister E, editor. Modern mathematical methods in diffraction theory and its applications in engineering. Methoden und Verfahren der Mathematischen Physik 42, Peter Lang, Frankfurt am Main; 1997. p. 174–202.
  • Arens T, Hettlich F, Kirsch A. The definition and measurement of electromagnetic chirality. Math Methods Appl Sci. 2018;41:559–572.
  • Hagemann F. Reconstructing the shape and measuring chirality of obstacles in electromagnetic scattering [PhD Thesis]. Karlsruhe Institute of Technology, 2019.
  • Colton D, Kress R. On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces. Math Methods Appl Sci. 2001;24:1289–1303.
  • Colton D, Kress R. Inverse acoustic and electromagnetic scattering theory. 4th ed. Cham: Springer; 2019. (Applied Mathematical Sciences – Vol. 93).
  • Athanasiadis C, Martin PA, Stratis IG. Electromagnetic scattering by a homogeneous chiral obstacle: scattering relations and the far-field operator. Math Methods Appl Sci. 1999;22:1175–1188.
  • Kirsch A, Hettlich F. The mathematical theory of time-harmonic maxwell's equations, expansion-, integral-, and variational methods. Cham: Springer; 2015. (Applied Mathematical Sciences -- Vol. 190).
  • Athanasiadis C, Costakis G, Stratis IG. On some properties of Beltrami fields in chiral media. Rep Math Phys. 2000;45:257–271.
  • Martin PA, Ola P. Boundary integral equations for the scattering of electromagnetic waves by a homogeneous dielectric obstacle. Proc R Soc Edinb A. 1993;123A:185–208.
  • Athanasiadis C, Costakis G, Stratis IG. Electromagnetic scattering by a perfectly conducting obstacle in a homogeneous chiral environment: solvability and low frequency theory. Math Methods Appl Sci. 2002;25:927–944.
  • Renardy M, Rogers RC. An introduction to partial differential equations. 2nd ed. New York: Springer; 2004.
  • Athanasiadis C, Martin PA, Stratis IG. Electromagnetic scattering by a homogeneous chiral obstacle: boundary integral equations and low-chirality approximations. SIAM J Appl Math. 1999;59:1745–1762.
  • Ammari H, Hamdache K, Nédélec J-C. Chirality in the Maxwell equations by the dipole approximation method. SIAM J Appl Math. 1999;59:2045–2059.
  • Fowler PW. Quantification of chirality: attempting the impossible. Symmetry Culture Sci. 2005;16:321–334.
  • Fernandez-Corbaton I, Fruhnert M, Rockstuhl C. Objects of maximum electromagnetic chirality. Phys Rev X. 2016;6:031013.
  • Kress R. Linear integral equations. New York: Springer; 2014. (Applied Mathematical Sciences -- Vol. 82).
  • Carlsson M. von Neumann's trace inequality for Hilbert-Schmidt operators. Expo Math.. 2021;39:149–157.
  • Arens T, Griesmaier R, Knöller M. Maximizing the electromagnetic chirality of thin dielectric tubes. preprint. Available from: https://publikationen.bibliothek.kit.edu/1000128968.
  • Hagemann F, Arens T, Betcke T, et al. Solving inverse electromagnetic scattering problems via domain derivatives. Inverse Probl. 2019;35(8):084005. 20.
  • Capdeboscq Y, Griesmaier R, Knöller M. An asymptotic representation formula for scattering by thin tubular structures and an application in inverse scattering, arXiv:2010.00834v1, 2020.
  • Sihvola AH, Zouhdi S. Handedness in plasmonics: electrical engineer's perspective. In: Zouhdi S, Sihvola AH, Vinogradov AP, editors. Metamaterials and plasmonics: fundamentals, modelling, applications, NATO Science for Peace and Security Series B: Physics and Biophysics. Dordrecht: Springer; 2009. p. 3–20.
  • Hori K, Katz S, Klemm A, et al. Mirror symmetry. Providence (RI): American Mathematical Society; 2003. (Clay Mathematical Monographs no. 1).
  • Kelvin WTB. Baltimore lectures on molecular dynamics and the wave theory of light. London: C. J. Clay and Sons; 1904.
  • Aste A. Complex representation theory of the electromagnetic field. J Geom Symmetry Phys. 2012;28:47–58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.