150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Discrete simulation optimization for tuning machine learning method hyperparameters

, , &
Received 23 Jun 2022, Accepted 22 May 2023, Published online: 06 Jun 2023

References

  • Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25rd ACM SIGKDD international conference on knowledge discovery and data mining, 2019, August 4–8, Anchorage, Alaska, USA, (pp. 2623–2631).
  • Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization. Advances in Neural Information Processing Systems 24 (NIPS 2011). https://proceedings.neurips.cc/paper_files/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
  • Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(1), 281–305. https://www.jmlr.org/papers/v13/bergstra12a.html
  • Bergstra, J., Yamins, D., & Cox, D. (2013). Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In International conference on machine learning, 2013, June 16–21, Atlanta, Georgia (GA), USA, (pp. 115–123).
  • Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., & others. (2021). Blockchain networks: Data structures of bitcoin, monero, zcash, ethereum, ripple, and iota. Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, 12(1), e1484. https://doi.org/10.1002/widm.1436
  • Chen, C.-H., & Lee, L. H. 2011. Stochastic simulation optimization: An optimal computing budget allocation Vol. 1. World scientific. https://doi.org/10.1142/7437
  • Chen, P.-W., Wang, J.-Y., & Lee, H.-M. (2004). Model selection of SVMs using ga approach. In 2004 ieee international joint conference on neural networks (ieee cat. no.04ch37541), 2004, July 25–29, Budapest, Hungary, (Vol. 3, p. 2035–2040).
  • Chen, S., Wu, J., & Liu, X. (2021). Emorl: Effective multi-objective reinforcement learning method for hyperparameter optimization. Engineering Applications of Artificial Intelligence, 104, 104315. https://doi.org/10.1016/j.engappai.2021.104315
  • Chollet, F. (2015). Keras. https://keras.io.
  • Cooper, K., & Hunter, S. R. (2020). Pymoso: Software for multiobjective simulation optimization with r-perle and r-minrle. INFORMS Journal on Computing, 32(4), 1101–1108. https://doi.org/10.1287/ijoc.2019.0902
  • Deng, L. (2012). The mnist database of handwritten digit images for machine learning research. IEEE Signal Processing Magazine, 29(6), 141–142. https://doi.org/10.1109/MSP.2012.2211477
  • Diaconis, P., & Freedman, D. Finite Exchangeable Sequences. (1980). Annals of Probability, 8(4), 745–764. Retrieved from. https://doi.org/10.1214/aop/1176994663
  • Dong, X., Shen, J., Wang, W., Shao, L., Ling, H., & Porikli, F. (2019). Dynamical hyperparameter optimization via deep reinforcement learning in tracking. IEEE Transactions on Pattern Analysis & Machine Intelligence, 43(5), 1515–1529. https://doi.org/10.1109/TPAMI.2019.2956703
  • Eggensperger, K., Hutter, F., Hoos, H., & Leyton-Brown, K. (2015). Efficient benchmarking of hyperparameter optimizers via surrogates. In Proceedings of the aaai conference on artificial intelligence, 2015, January 25–30, Austin, Texas (TX), USA, (Vol. 29).
  • Falkner, S., Klein, A., & Hutter, F. (2018). Bohb: Robust and efficient hyperparameter optimization at scale. In International conference on machine learning, 2018, July 10–15, Stockholm, Sweden, (pp. 1437–1446).
  • Henderson, S. G., & Nelson, B. L. (2006). Handbooks in operations research and management science: Simulation. Elsevier.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Hong, L. J., & Nelson, B. L. (2006). Discrete optimization via simulation using compass. Operations Research, 54(1), 115–129. https://doi.org/10.1287/opre.1050.0237
  • Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based optimization for general algorithm configuration. In International conference on learning and intelligent optimization, 2011, January 17–21, Rome, Italy, (pp. 507–523).
  • Iranfar, A., Zapater, M., & Atienza, D. (2021). Multiagent reinforcement learning for hyperparameter optimization of convolutional neural networks. IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, 41(4), 1034–1047. https://doi.org/10.1109/TCAD.2021.3077193
  • Jaafra, Y., Laurent, J. L., Deruyver, A., & Naceur, M. S. (2019). Reinforcement learning for neural architecture search: A review. Image and Vision Computing, 89, 57–66. https://doi.org/10.1016/j.imavis.2019.06.005
  • Jomaa, H. L. A. I. L. S., Grabocka, J., & Schmidt-Thieme, L. (2019). Hyp-rl: Hyperparameter optimization by reinforcement learning. arXiv preprint arXiv:1906.11527. https://doi.org/10.48550/arXiv.1906.11527
  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
  • Karl, F., Pielok, T., Moosbauer, J., Pfisterer, F., Coors, S., & Binder, M. (2022). Multi-objective hyperparameter optimization–an overview. arXiv preprint arXiv:2206.07438. https://doi.org/10.48550/arXiv.2206.07438
  • Karnin, Z., Koren, T., & Somekh, O. (2013). Almost optimal exploration in multi-armed bandits. In International conference on machine learning, 2013, June 16–21, Atlanta, Georgia (GA), USA ,(pp. 1238–1246).
  • Kim, S.-H., & Nelson, B. L. (2001). A fully sequential procedure for indifference-zone selection in simulation. ACM Transactions on Modeling and Computer Simulation, 11(3), 251–273. https://doi.org/10.1145/502109.502111
  • Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26). Springer. https://doi.org/10.1007/978-1-4614-6849-3
  • Lessmann, S., Stahlbock, R., & Crone, S. F. (2005). Optimizing hyperparameters of support vector machines by genetic algorithms. IC-AI, 2005, June 27–30, Las Vegas, Nevada (NV), USA, (pp. 74–82).
  • Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2017). Hyperband: A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research, 18(1), 6765–6816. https://www.jmlr.org/papers/v18/16-558.html
  • Liu, X., Wu, J., & Chen, S. (2022). A context-based meta-reinforcement learning approach to efficient hyperparameter optimization. Neurocomputing, 478, 89–103. https://doi.org/10.1016/j.neucom.2021.12.086
  • Lorenzo, P. R., Nalepa, J., Kawulok, M., Ramos, L. S., & Pastor, J. R. (2017). Particle swarm optimization for hyper-parameter selection in deep neural networks. In Proceedings of the genetic and evolutionary computation conference, 2017, July 15–19, Berlin, Germany, (pp. 481–488). Association for Computing Machinery. Retrieved from https://doi.org/10.1145/3071178.3071208
  • Maclaurin, D., Duvenaud, D., & Adams, R. P. (2015, June 6–11). Gradient-based hyperparameter optimization through reversible learning. Proceedings of the 32nd International Conference on Machine Learning, PMLR, Lille, France, 37, 2113–2122 .
  • Nelson, B. L. (2010). Optimization via simulation over discrete decision variables. In Risk and optimization in an uncertain world (pp. 193–207). Informs. https://doi.org/10.1287/educ.1100.0069
  • Ni, E. C., Ciocan, D. F., Henderson, S. G., & Hunter, S. R. (2017). Efficient ranking and selection in parallel computing environments. Operations Research, 65(3), 821–836. https://doi.org/10.1287/opre.2016.1577
  • O’Neill, B. (2009). Exchangeability, correlation, and Bayes’ effect. International Statistical Review, 77(2), 241–250. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2008.00059.x
  • Pedregosa, F. (2016, June 19–24). Hyperparameter optimization with approximate gradient. Proceedings of The 33rd International Conference on Machine Learning, PMLR, New York, NY, USA, 48, 737–746.
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Duchesnay, E., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., & Perrot, M. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html
  • Ramamohan, V., Agrawal, U., & Goyal, M. (2020). A note on the stochastic ruler method for discrete simulation optimization. arXiv. Retrieved from https://arxiv.org/abs/2010.06909
  • Ressel, P. (1985). De finetti-type Theorems: An analytical approach . In The annals of probability, 13, 898–922.
  • Rijsdijk, J., Wu, L., Perin, G., & Picek, S. (2021). Reinforcement learning for hyperparameter tuning in deep learning-based side-channel analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems, 677–707. https://doi.org/10.46586/tches.v2021.i3.677-707
  • Sandha, S. S., Aggarwal, M., Fedorov, I., & Srivastava, M. (2020, May 4–8).Mango: A python library for parallel hyperparameter tuning. In Icassp 2020-2020 ieee international conference on acoustics, speech and signal processing (icassp), Barcelona, Spain, (pp. 3987–3991).
  • Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems, 25, 2951–2959. https://proceedings.neurips.cc/paper_files/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
  • Wu, J., Chen, S., & Liu, X. (2020). Efficient hyperparameter optimization through model- based reinforcement learning. Neurocomputing, 409, 381–393. https://doi.org/10.1016/j.neucom.2020.06.064
  • Wu, J., Liu, X., & Chen, S. (2023). Hyperparameter optimization through context-based meta-reinforcement learning with task-aware representation. Knowledge-Based Systems, 260, 110160. https://doi.org/10.1016/j.knosys.2022.110160
  • Xu, J., Nelson, B. L., & Hong, J. L. (2010). Industrial strength compass: A comprehensive algorithm and software for optimization via simulation. ACM Transactions on Modeling and Computer Simulation, 20(1), 1–29. https://doi.org/10.1145/1667072.1667075
  • Xu, J., Nelson, B. L., & Hong, L. J. (2013). An adaptive hyperbox algorithm for high- dimensional discrete optimization via simulation problems. INFORMS Journal on Computing, 25(1), 133–146. https://doi.org/10.1287/ijoc.1110.0481
  • Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061
  • Yan, D., & Mukai, H. (1992). Stochastic discrete optimization. SIAM Journal on Control and Optimization, 30(3), 594–612. https://doi.org/10.1137/0330034
  • Yu, T., & Zhu, H. (2020). Hyper-parameter optimization: A review of algorithms and applications. arXiv preprint arXiv:2003.05689. https://doi.org/10.48550/arXiv.2003.05689

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.