242
Views
0
CrossRef citations to date
0
Altmetric
Research article

Quantization-based simulation of spiking neurons: theoretical properties and performance analysis

, , , &
Received 06 Dec 2022, Accepted 10 Nov 2023, Published online: 22 Nov 2023

References

  • Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., Diesmann, M., Morrison, A., Goodman, P. H., Harris, F. C., Zirpe, M., Natschläger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T. … El Boustani, S. (2007). Simulation of networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398. https://doi.org/10.1007/s10827-007-0038-6
  • Brunel, N., Hakim, V., & Richardson, M. J. (2003). Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. Physical Review E, 67(5), 051916. https://doi.org/10.1103/PhysRevE.67.051916
  • Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: I. homogeneous synaptic input. Biological Cybernetics, 95(1), 1–19. https://doi.org/10.1007/s00422-006-0068-6
  • Castro, R., & Kofman, E. (2015). Activity of order n in continuous systems. Simulation, 91(4), 337–348. https://doi.org/10.1177/0037549715577124
  • Cellier, F., & Kofman, E. (2006). Continuous system simulation. Springer.
  • Cohen, S. D., Hindmarsh, A. C., & Dubois, P. F. (1996). CVODE, a stiff/nonstiff ODE solver in C. Computers in Physics, 10(2), 138–143. https://doi.org/10.1063/1.4822377
  • D’Abreu, M. C., & Wainer, G. A. (2005). M/cd++: Modeling continuous systems using modelica and devs. In Modeling, analysis, and simulation of computer and telecommunication systems, 2005. 13th ieee international symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Atlanta, GA, USA, (pp. 229–236).
  • Dormand, J. R., & Prince, P. J. (1980). A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics, 6(1), 19–26. https://doi.org/10.1016/0771-050X(80)90013-3
  • Ermentrout, B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 8(5), 979–1001. https://doi.org/10.1162/neco.1996.8.5.979
  • Fernández, J., & Kofman, E. (2014). A stand-alone quantized state system solver for continuous system simulation. Simulation: Transactions of the Society for Modeling and Simulation International, 90(7), 782–799. https://doi.org/10.1177/0037549714536255
  • Fernandez, J., Kofman, E., & Bergero, F. (2017). A parallel quantized state system solver for odes. Journal of Parallel and Distributed Computing, 106, 14–30. https://doi.org/10.1016/j.jpdc.2017.02.011
  • Fourcaud-Trocmé, N., & Brunel, N. (2005). Dynamics of the instantaneous firing rate in response to changes in input statistics. Journal of Computational Neuroscience, 18(3), 311–321. https://doi.org/10.1007/s10827-005-0337-8
  • Fourcaud-Trocmé, N., Hansel, D., Van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23(37), 11628–11640. https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
  • Gerstner, W., Kistler, W. M., Naud, R., & Paninski, L. (2014). Neuronal dynamics: From single neurons to networks and models of cognition. Cambridge University Press.
  • Grinblat, G. L., Ahumada, H., & Kofman, E. (2012). Quantized state simulation of spiking neural networks. Simulation, 88(3), 299–313. https://doi.org/10.1177/0037549711399935
  • Hansel, D., Mato, G., Meunier, C., & Neltner, L. (1998). On numerical simulations of integrate- and-fire neural networks. Neural Computation, 10(2), 467–483. https://doi.org/10.1162/089976698300017845
  • Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., & Diesmann, M. (2010a). A general and efficient method for incorporating precise spike times in globally time-driven simulations. Frontiers in Neuroinformatics, 4, 113. https://doi.org/10.3389/fninf.2010.00113
  • Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., & Diesmann, M. (2010b). A general and efficient method for incorporating precise spike times in globally time-driven simulations. Frontiers in Neuroinformatics, 4, 113. https://doi.org/10.3389/fninf.2010.00113
  • Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E., & Woodward, C. S. (2005). Sundials: Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software (TOMS), 31(3), 363–396. https://doi.org/10.1145/1089014.1089020
  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, Paris, 117(4), 500. https://doi.org/10.1113/jphysiol.1952.sp004764
  • Izhikevich, E. M. (2003a). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572. https://doi.org/10.1109/TNN.2003.820440
  • Izhikevich, E. M. (2003b). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572. https://doi.org/10.1109/TNN.2003.820440
  • Izhikevich, E. M. (2007). Dynamical systems in neuroscience. MIT press.
  • Jammalamadaka, R. (2003). Activity characterization of spatial models: Application to the discrete event solution of partial differential equations [ Master’s thesis]. University of Arizona,
  • Kaabi, M. G., Tonnelier, A., & Martinez, D. (2011). On the performance of voltage stepping for the simulation of adaptive, nonlinear integrate-and-fire neuronal networks. Neural Computation, 23(5), 1187–1204. https://doi.org/10.1162/NECO_a_00112
  • Kofman, E. (2002). A second-order approximation for DEVS simulation of continuous systems. Simulation: Transactions of the Society for Modeling and Simulation International, 78(2), 76–89. https://doi.org/10.1177/0037549702078002206
  • Kofman, E. (2004a). Discrete event simulation of hybrid systems. SIAM Journal on Scientific Computing, 25(5), 1771–1797. https://doi.org/10.1137/S1064827502418379
  • Kofman, E. (2004b). Discrete event simulation of hybrid systems. SIAM Journal on Scientific Computing, 25(5), 1771–1797. https://doi.org/10.1137/S1064827502418379
  • Kofman, E. (2005). Non-conservative ultimate bound estimation in lti perturbed systems. Automatica, 41(10), 1835–1838. https://doi.org/10.1016/j.automatica.2005.04.024
  • Kofman, E., Fernández, J., & Marzorati, D. (2021). Compact sparse symbolic Jacobian computation in large systems of odes. Applied Mathematics and Computation, 403, 126181. https://doi.org/10.1016/j.amc.2021.126181
  • Kofman, E., & Junco, S. (2001). Quantized state systems. A DEVS approach for continuous system simulation. Transactions of SCS, 18(3), 123–132.
  • Lapicque, L. (1907). Recherches quantitatives sur l’excitation electrique des nerfs. Journal of Physiology Paris, 9(1), 620–635. https://doi.org/10.1007/s00422-007-0189-6.
  • Mascart, C., Scarella, G., Reynaud-Bouret, P., & Muzy, A. (2022). Scalability of large neural network simulations via activity tracking with time asynchrony and procedural connectivity. Neural Computation, 34(9), 1915–1943. https://doi.org/10.1162/neco_a_01524
  • Mattsson, S. E., Elmqvist, H., & Otter, M. (1998). Physical system modeling with modelica. Control Engineering Practice, 6(4), 501–510. https://doi.org/10.1016/S0967-0661(98)00047-1
  • Migoni, G., Bortolotto, M., Kofman, E., & Cellier, F. (2013). Linearly implicit quantization- based integration methods for stiff ordinary differential equations. Simulation Modelling Practice and Theory, 35, 118–136. https://doi.org/10.1016/j.simpat.2013.03.004
  • Morrison, A., & Diesmann, M. (2007). Maintaining causality in discrete time neuronal network simulations. In P. B. Graben, C. Zhou, M. Thiel, & J. Kurths (Eds.), Lectures in supercomputational neurosciences (pp. 267–278). Springer.
  • Muzy, A., Jammalamadaka, R., Zeigler, B. P., & Nutaro, J. J. (2011). The activity-tracking paradigm in discrete-event modeling and simulation: The case of spatially continuous distributed systems. Simulation, 87(5), 449–464. https://doi.org/10.1177/0037549710365155
  • Park, T., & Barton, P. I. (1996). State event location in differential-algebraic models. ACM Transactions on Modeling and Computer Simulation, 6(2), 137–165. https://doi.org/10.1145/232807.232809
  • Petzold, L. R. (1982). Description of dassl: a differential/algebraic system solver ( Tech. Rep). Sandia National Labs.
  • Potjans, T. C., & Diesmann, M. (2014). The cell-type specific cortical microcircuit: Relating structure and activity in a full-scale spiking network model. Cerebral Cortex, 24(3), 785–806. https://doi.org/10.1093/cercor/bhs358
  • Quesnel, G., Duboz, R., Ramat, É., & Traoré, M. K. (2007). Vle: a multimodeling and simulation environment. In Proceedings of the 2007 summer computer simulation conference, San Diego California, (pp. 367–374).
  • Richardson, M. J., Brunel, N., & Hakim, V. (2003). From subthreshold to firing-rate resonance. Journal of Neurophysiology, 89(5), 2538–2554. https://doi.org/10.1152/jn.00955.2002
  • Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M., van Albada, S. J., & Graham, L. J. (2018). A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas. PLOS Computational Biology, 14(10), e1006359. https://doi.org/10.1371/journal.pcbi.1006359
  • Shelley, M. J., & Tao, L. (2001). Efficient and accurate time-stepping schemes for integrate- and-fire neuronal networks. Journal of Computational Neuroscience, 11(2), 111–119. https://doi.org/10.1023/A:1012885314187
  • Stein, R. B. (1967). Some models of neuronal variability. Biophysical Journal, 7(1), 37–68. https://doi.org/10.1016/S0006-3495(67)86574-3
  • Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25(46), 10786–10795. https://doi.org/10.1523/JNEUROSCI.3508-05.2005
  • Zeigler, B. P., Kim, T. G., & Praehofer, H. (2000). Theory of modeling and simulation. Academic press.
  • Zeigler, B. P., Muzy, A., & Kofman, E. (2018). Theory of modeling and simulation: Discrete event & iterative system computational foundations. Academic Press.
  • Zheng, G., Tonnelier, A., & Martinez, D. (2009). Voltage-stepping schemes for the simulation of spiking neural networks. Journal of Computational Neuroscience, 26(3), 409–423. https://doi.org/10.1007/s10827-008-0119-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.