337
Views
7
CrossRef citations to date
0
Altmetric
Papers

Spatio-temporal dynamics of malaria expansion under climate change in semi-arid areas of Ethiopia

, , ORCID Icon, &
Pages 400-413 | Received 10 Aug 2018, Accepted 11 Apr 2019, Published online: 25 Apr 2019

References

  • Abeku, T. A., Van Oortmarssen, G. J., Borsboom, G., de Vlas, S. J., & Habbema, J. (2003). Spatial and temporal variations of malaria epidemic risk in Ethiopia: Factors involved and implications. Acta Tropica, 87, 331–340. doi: 10.1016/S0001-706X(03)00123-2
  • Abrha, H. (2018). Climate change impact on coffee and the pollinator bee suitable area interaction in Raya Azebo. Ethiopia, Cogent Food & Agriculture, 4(1). doi: 10.1080/23311932.2018.1564538
  • Abrha, H., Birhane, E., Hagos, H., & Manaye, A. (2018). Predicting suitable habitats of endangered Juniperus procera tree under climate change in northern Ethiopia. Journal of Sustainable Forestry, 37(8), 842–853. doi: 10.1080/10549811.2018.1494000
  • Abrha, H., Birhane, E., Zenebe, A., Hagos, H., Girma, A., Aynekulu, E., & Alemie, A. (2018). Modeling the impacts of climate change and cochineal (Dactylopius coccus Costa) invasion on the future distribution of cactus pear (Opuntia ficus-indica (L.) Mill.) in northern Ethiopia. Journal of the Professional Association for Cactus Development, 20, 128–150.
  • Al Ahmed, A. M., Naeem, M., Kheir, S. M., & Sallam, M. F. (2015). Ecological distribution modeling of two malaria mosquito vectors using geographical information system in Al-Baha Province, Kingdom of Saudi Arabia. Pakistan Journal of Zoology, 47, 1797–1806.
  • Alelign, A., & Dejene, T. (2016). Current status of malaria in Ethiopia: Evaluation of the burden, factors for transmission and prevention methods. Acta Parasitol Glob, 7, 1–6.
  • Alemu, A., Abebe, G., Tsegaye, W., & Golassa, L. (2011). Climatic variables and malaria transmission dynamics in Jimma town, South West Ethiopia. Parasites & Vectors, 4, 30. doi: 10.1186/1756-3305-4-30
  • An, G. (2011). Influence of climate on malaria in China. Penn McNair Research Journal, 3(1), 1.
  • Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation of species–climate impact models under climate change. Global Change Biology, 11, 1504–1513. doi: 10.1111/j.1365-2486.2005.01000.x
  • Aung, M., Shrestha, S., Weesakul, S., & Shrestha, P. (2015). Multi-model climate change projections for Belu River Basin, Myanmar under representative concentration pathways. Journal of Earth Science & Climatic Change, 7.
  • Baldwin, R. (2009). Use of maximum entropy modeling in wildlife research. Entropy, 11, 854–866. doi: 10.3390/e11040854
  • Beck, L. R., Lobitz, B. M., & Wood, B. L. (2000). Remote sensing and human health: New sensors and new opportunities. Emerging Infectious Diseases, 6, 217–227. doi: 10.3201/eid0603.000301
  • Bedane, A. S., Tanto, T. K., & Asena, T. F. (2016). Malaria distribution in Kucha district of Gamo Gofa Zone. Ethiopia: A Time Series Approach. American Journal of Theoretical and Applied Statistics, 5, 70–79.
  • Belay, M., & Deressa, W. (2008). Use of insecticide treated nets by pregnant women and associated factors in a pre-dominantly rural population in northern Ethiopia. Tropical Medicine & International Health, 13(10), 1303–1313. doi: 10.1111/j.1365-3156.2008.02159.x
  • Beyene, B., Yalew, W., Demilew, E., Abie, G., Tewabe, T., & Abera, B. (2016). Performance evaluation of rapid diagnostic test for malaria in high malarious districts of Amhara region, Ethiopia. Journal of Vector Borne Diseases, 53, 63–63.
  • Bi, P., Tong, S., Donald, K., Parton, K. A., & Ni, J. (2003). Climatic variables and transmission of malaria: A 12-year data analysis in Shuchen County, China. Public Health Reports, 118, 65. doi: 10.1016/S0033-3549(04)50218-2
  • Caminade, C., Kovats, S., Rocklov, J., Tompkins, A. M., Morse, A. P., Colón-González, F. J., … Lloyd, S. J. (2014). Impact of climate change on global malaria distribution. Proceedings of the National Academy of Sciences, 111, 3286–3291. doi: 10.1073/pnas.1302089111
  • Ceccarelli, S., Balsalobre, A., Susevich, M. L., Echeverria, M. G., Gorla, D. E., & Marti, G. A. (2015). Modelling the potential geographic distribution of triatomines infected by Triatoma virus in the southern cone of South America. Parasites & Vectors, 8, 153. doi: 10.1186/s13071-015-0761-1
  • Clements, A. C., Barnett, A. G., Cheng, Z. W., Snow, R. W., & Zhou, H. N. (2009). Space-time variation of malaria incidence in Yunnan province, China. Malaria Journal, 8, 180. doi: 10.1186/1475-2875-8-180
  • Confalonieri, U., Menne, B., Akhtar, R., Ebi, K. L., Hauengue, M., Kovats, R. S., … Woodward, A. (2007). Human health. Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change.
  • Conway, D. (2000). Some aspects of climate variability in the north east Ethiopian highlands-Wollo and Tigray. Sinet: Ethiopian Journal of Science, 23, 139–161.
  • Cropper, M. L., Haile, M., Lampietti, J., Poulos, C., & Whittington, D. (2004). The demand for a malaria vaccine: Evidence from Ethiopia. Journal of Development Economics, 75, 303–318. doi: 10.1016/j.jdeveco.2003.02.006
  • Dejenie, T., Yohannes, M., & Assmelash, T. (2011). Characterization of mosquito breeding sites in and in the vicinity of Tigray microdams. Ethiopian Journal of Health Sciences, 21(1), 57–66. doi: 10.4314/ejhs.v21i1.69045
  • Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., … Lehmann, A. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151. doi: 10.1111/j.2006.0906-7590.04596.x
  • Fand, B. B., Tonnang, H. E., Kumar, M., Bal, S. K., Singh, N. P., Rao, D., … Minhas, P. S. (2014). Predicting the impact of climate change on regional and seasonal abundance of the mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) using temperature-driven phenology model linked to GIS. Ecological Modelling, 288, 62–78. doi: 10.1016/j.ecolmodel.2014.05.018
  • Ferguson, H. M., Dornhaus, A., Beeche, A., Borgemeister, C., Gottlieb, M., Mulla, M. S., … Killeen, G. F. (2010). Ecology: A prerequisite for malaria elimination and eradication. PLoS Medicine, 7, e1000303. doi: 10.1371/journal.pmed.1000303
  • Fisher, B., Nakicenovic, N., Alfsen, K., Corfee-Morlot, J., de la Chesnaye , F., Hourcade, J.-C., … Matysek, A. (2007). Issues related to mitigation in the long-term context. In B. Metz, O. Davidson, P. Bosch, R. Dave, & L. Meyer (Eds.), Climate change 2007. Mitigation of climate change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 169–250). New York: Cambridge University Press.
  • Flores-Hernández, A., Murillo-Amador, B., Rueda-Puente, E. O., Salazar-Torres, J. C., García-Hernández, J. L., & Troyo-Diéguez, E. (2006). Reproducción de cochinilla silvestre Dactylopius opuntiae (Homóptera: Dactylopiidae). Revista Mexicana de Biodiversidad, 77, 97–102.
  • Gidey, T. G. (2012). Food security policy: Does it work? Does it help? (Doctoral dissertation, PhD thesis presented at the University of Twente Faculty of Geo-Information Science and Earth Observation), Enschede, Netherlands. http://www.itc.nl/research/phd/phdgraduates.aspx.
  • Gebrehiwot, T., & van der Veen, A. (2013). Assessing the evidence of climate variability in the northern part of Ethiopia. Journal of Development and Agricultural Economics, 5, 104–119. doi: 10.5897/JDAE12.056
  • González, C., Wang, O., Strutz, S. E., González-Salazar, C., Sánchez-Cordero, V., & Sarkar, S. (2010). Climate change and risk of leishmaniasis in North America: Predictions from ecological niche models of vector and reservoir species. PLoS Neglected Tropical Diseases, 4, e585. doi: 10.1371/journal.pntd.0000585
  • Haileselassie, B., & Ali, A. (2008). Asesment of insecticide treated nets coverage for malaria control in Kafta-Humera district, Tigray: Possession versus use by high-risk groups. Ethiopian Journal of Health Development, 3, 259–267.
  • Janko, M. M., Irish, S. R., Reich, B. J., Peterson, M., Doctor, S. M., Mwandagalirwa, M. K., … Emch, M. E. (2018). The links between agriculture, Anopheles mosquitoes, and malaria risk in children younger than 5 years in the Democratic Republic of the Congo: A population-based, cross-sectional, spatial study. The Lancet Planetary Health, 2, e74–e82. doi: 10.1016/S2542-5196(18)30009-3
  • Jones, M. K., & Good, M. F. (2006). Malaria parasites up close. Nature Medicine, 12, 170. doi: 10.1038/nm0206-170
  • Kalluri, S., Gilruth, P., Rogers, D., & Szczur, M. (2007). Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: A review. PLoS Pathogens, 3, e116. doi: 10.1371/journal.ppat.0030116
  • Kebede, E., Redda, Y. T., Hagos, Y., & Ababelgu, N. A. (2015). Prevalence of wax moth in modern hive with colonies in kafta humera. Animal and Veterinary Sciences, 3, 132–135. doi: 10.11648/j.avs.20150305.12
  • Laporta, G. Z., Linton, Y.-M., Wilkerson, R. C., Bergo, E. S., Nagaki, S. S., Sant’Ana, D. C., & Sallum, M. A. M. (2015). Malaria vectors in South America: Current and future scenarios. Parasites & Vectors, 8, 426. doi: 10.1186/s13071-015-1038-4
  • Lemma, H., San Sebastian, M., Löfgren, C., & Barnabas, G. (2011). Cost-effectiveness of three malaria treatment strategies in rural Tigray, Ethiopia where both Plasmodium falciparum and Plasmodium vivax co-dominate. Cost Effectiveness and Resource Allocation, 9, 2. doi: 10.1186/1478-7547-9-2
  • Martens, W. J., Niessen, L. W., Rotmans, J., Jetten, T. H., & McMichael, A. J. (1995). Potential impact of global climate change on malaria risk. Environmental Health Perspectives, 103(5), 458–464. doi: 10.1289/ehp.95103458
  • Masuoka, P., Klein, T. A., Kim, H.-C., Claborn, D. M., Achee, N., Andre, R., … Anyamba, A. (2009). Modeling and analysis of mosquito and environmental data to predict the risk of Japanese encephalitis. ASPRS Annual Conference Baltimore, MD.
  • Moffett, A., Shackelford, N., & Sarkar, S. (2007). Malaria in Africa: Vector species’ niche models and relative risk maps. PLoS One, 2, e824. doi: 10.1371/journal.pone.0000824
  • MoH, F. D. E. (2006). National five-year strategic plan for malaria prevention and control in Ethiopia. Addis Ababa: Minister of Health.
  • Paaijmans, K. P., Blanford, S., Bell, A. S., Blanford, J. I., Read, A. F., & Thomas, M. B. (2010). Influence of climate on malaria transmission depends on daily temperature variation. Proceedings of the National Academy of Sciences, 107(34), 15135–15139. doi: 10.1073/pnas.1006422107
  • Patz, J. A., & Olson, S. H. (2006). Malaria risk and temperature: Influences from global climate change and local land use practices. Proceedings of the National Academy of Sciences, 103, 5635–5636. doi: 10.1073/pnas.0601493103
  • Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361–371. doi: 10.1046/j.1466-822X.2003.00042.x
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. doi: 10.1016/j.ecolmodel.2005.03.026
  • Ren, Z., Wang, D., Ma, A., Hwang, J., Bennett, A., Sturrock, H. J., … Feng, X. (2016). Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination. Scientific Reports, 6, 20604. doi: 10.1038/srep20604
  • Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., … Rafaj, P. (2011). RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 33. doi: 10.1007/s10584-011-0149-y
  • Roura-Pascual, N., & Suarez, A. V. (2008). The utility of species distribution models to predict the spread of invasive ants (Hymenoptera: Formicidae) and to anticipate changes in their ranges in the face of global climate change. Myrmecological News / Osterreichische Gesellschaft Fur Entomofaunistik, 11, 67–77.
  • Scheldeman, X., & Zonneveld, M. v. (2010). Training manual on spatial analysis of plant diversity and distribution. Rome, Italy: Bioversity International. URL http://www.Bioversityinternational.Org/training/training_materials/gis_manual/gis_download.Html [accessed 12 January 2019].
  • Seboxa, T., & Snow, R. W. (1997). Epidemiological features of severe paediatric malaria in north western Ethiopia. East African Medical Journal, 74(12), 780–783.
  • Seleshi, Y., & Zanke, U. (2004). Recent changes in rainfall and rainy days in Ethiopia. International Journal of Climatology, 24, 973–983. doi: 10.1002/joc.1052
  • Semenov, M. A., & Stratonovitch, P. (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate Research, 41, 1–14. doi: 10.3354/cr00836
  • Slater, H., & Michael, E. (2012). Predicting the current and future potential distributions of lymphatic filariasis in Africa using maximum entropy ecological niche modelling. PloS one, 7, e32202. doi: 10.1371/journal.pone.0032202
  • Stern, D. I., Gething, P. W., Kabaria, C. W., Temperley, W. H., Noor, A. M., Okiro, E. A., … Hay S. I. (2011). Temperature and malaria trends in highland East Africa. PLoS ONE, 6(9), e24524. doi: 10.1371/journal.pone.0024524
  • Stocker, T.F. (2013). Climate change 2013: The physical science basis: Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  • Sutherst, R. W. (2014). Pest species distribution modelling: Origins and lessons from history. Biological Invasions, 16, 239–256. doi: 10.1007/s10530-013-0523-y
  • Tamiru, M. A., Kassa, A. W., Beyene, B. B., Mossie, T. B., & Mekonnen, Y. A. (2014). Malaria outbreak investigation in Mecha, Dera and Fogera districts, Amhara region, Ethiopia. American Journal of Health Research, 2, 182–187. doi: 10.11648/j.ajhr.20140204.23
  • Tanser, F. C., Sharp, B., & Le Sueur, D. (2003). Potential effect of climate change on malaria transmission in Africa. The Lancet, 362, 1792–1798. doi: 10.1016/S0140-6736(03)14898-2
  • Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., … Clarke, L. E. (2011). RCP4. 5: A pathway for stabilization of radiative forcing by 2100. Climatic Change, 109, 77. doi: 10.1007/s10584-011-0151-4
  • Thuiller, W., Albert, C., Araujo, M. B., Berry, P. M., Cabeza, M., Guisan, A., … Schurr, F. M. (2008). Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9, 137–152. doi: 10.1016/j.ppees.2007.09.004
  • Tonnang, H. E., Kangalawe, R. Y., & Yanda, P. Z. (2010). Predicting and mapping malaria under climate change scenarios: The potential redistribution of malaria vectors in Africa. Malaria Journal, 9, 111. doi: 10.1186/1475-2875-9-111
  • van Vuuren, D. P., Isaac, M., Kundzewicz, Z. W., Arnell, N., Barker, T., Criqui, P., … Hof, A. (2011). The use of scenarios as the basis for combined assessment of climate change mitigation and adaptation. Global Environmental Change, 21, 575–591. doi: 10.1016/j.gloenvcha.2010.11.003
  • Ward, D. F. (2007). Modelling the potential geographic distribution of invasive ant species in New Zealand. Biological Invasions, 9, 723–735. doi: 10.1007/s10530-006-9072-y
  • World Health Organization. (2007). World Malaria Report. Geneva: WHO.
  • World Health Organization. (2018). World Malaria Report. Geneva: WHO.
  • Yamana, T. K., & Eltahir, E. A. (2013). Incorporating the effects of humidity in a mechanistic model of Anopheles gambiae mosquito population dynamics in the Sahel region of Africa. Parasites & Vectors, 6(1), 235. doi: 10.1186/1756-3305-6-235
  • Yohannes, M., & Haile, M. (2010). The potential of in situ rain water harvesting for water resources conservation on malaria transmission in Tigray. Northern Ethiopia. Momona Ethiopian Journal of Science, 2, 49–63.
  • Young, N., Carter, L., & Evangelista, P. (2011). A MaxEnt model v3. 3.3 e tutorial (ArcGIS v10) (pp. 30). Fort Collins, CO: Laboratory at Colorado State University and the National Institute of Invasive Species Science.
  • Zhou, G., Minakawa, N., Githeko, A. K., & Yan, G. (2004). Association between climate variability and malaria epidemics in the East African highlands. Proceedings of the National Academy of Sciences, 101, 2375–2380. doi: 10.1073/pnas.0308714100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.