172
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Thermal degradation modeling for single-shear nailed connections

, &
Pages 16-20 | Received 04 Mar 2016, Accepted 17 Aug 2016, Published online: 12 Sep 2016

References

  • Akgul, T. and Sinha, A. (2016) Degradation of yield strength of laterally loaded wood-to-oriented strandboard connections after exposure to elevated temperatures. Wood and Fiber Science, 48, 58–67.
  • Aklonis, J. J. and MacKnight, W. J. (1983) Introduction to Polymer Viscoelasticity. 2nd ed. (New York: John Wiley and Sons).
  • ANSI/AWC (2015) National Design Specification® for Wood Construction (Washington, DC: American Wood Council).
  • ASTM (2007) D 1761 Standard Test Method for Determining Bending Yield Moment of Nails (West Conshohocken, PA: American Society for Testing and Materials).
  • Audebert, M., Dhima, D., Taazount, M. and Bouchaïr, A. (2011) Numerical investigations on the thermo-mechanical behavior of steel-to-timber joints exposed to fire. Engineering Structures, 32, 3257–3268. doi: 10.1016/j.engstruct.2011.08.021
  • Audebert, M., Dhima, D., Taazount, M. and Bouchaïr, A. (2012) Behavior of dowelled and bolted steel-to-timber connections exposed to fire. Engineering Structures, 39, 116–125. doi: 10.1016/j.engstruct.2012.02.010
  • Brancheriau, L. and Baillères, H. (2003) Use of the partial least squares method with acoustic vibration spectra as a new grading technique for structural timber. Holzforschung, 57 (6), 644–652. doi: 10.1515/HF.2003.097
  • Buchanan, A. H. (2002) Structural design for fire safety (West Sussex: John Wiley and Sons).
  • Cachim, P.B. and Franssen, J. M. (2009) Numerical modelling of timber connections under fire using a component model. Journal of Fire Safety, 44, 840–853. doi: 10.1016/j.firesaf.2009.03.013
  • EN 1995-1-2:2004, Eurocode 5: Design of timber structures – Part 1–2: general rules – structural fire design. CEN/TC 250/SC5, 2004.
  • Erchinger, C., Frangi, A. and Fontana, M. (2010) Fire design of steel-to-timber dowelled connections. Engineering Structures, 32, 580–589. doi: 10.1016/j.engstruct.2009.11.004
  • Frangi, A., Schleifer, V., Fontana, M. and Hugi, E. (2010) Experimental and numerical analysis of gypsum plasterboards in fire. Fire Technology, 46 (1), 149–167. doi: 10.1007/s10694-009-0097-5
  • Fuller, J. J. (1990) Predicting the thermo-mechanical behavior of a gypsum-to-wood nailed connection. Thesis (MS), Oregon State University.
  • Ikonen, V., Peltola, H., Wilhelmsson, L., Kilpelainen, A., Vaisanen, H., Nuutinen, T. and Kellomaki, S. (2008) Modelling the distribution of wood properties along the stems of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as affected by silvicultural management. Forest Ecology and Management, 256, 1356–1371. doi: 10.1016/j.foreco.2008.06.039
  • Noren, J. (1996) Load-bearing capacity of nailed joints exposed to fire. Fire Material, 20, 133–143. doi: 10.1002/(SICI)1099-1018(199605)20:3<133::AID-FAM565>3.0.CO;2-3
  • Peng, L., Hadjisophocleous, G., Mehaffey, J. and Mohammad, M. (2010) Fire resistance performance of unprotected wood–wood–wood and wood–steel–wood connections: A literature review and new data correlations. Journal of Fire Safety, 45, 392–399. doi: 10.1016/j.firesaf.2010.08.003
  • Peyer, S. M. and Cramer, S. M. (1999) Behavior of nailed connection at elevated temperature. Wood and Fiber Science, 31 (3), 264–276.
  • Racher, P., Laplanche, K., Dhima, D. and Bouchaïr, A. (2010) Thermo-mechanical analysis of the fire performance of dowelled timber connection. Engineering Structures, 32, 1148–1157. doi: 10.1016/j.engstruct.2009.12.041
  • Shrestha, D., Cramer S. M. and White, R. (1995) Simplified models for the properties of dimension lumber and metal-plate connections at elevated temperatures. Forest Products Journal, 45 (7/8), 35–42.
  • Sinha, A., Gupta, R. and Nairn, J. A. (2011a) Thermal degradation of bending properties of structural wood and wood-based composites. Holzforschung, 65 (2), 221–229. doi: 10.1515/hf.2011.001
  • Sinha, A., Gupta, R. and Nairn, J. A. (2011b) Thermal degradation of lateral yield strength of nailed wood connections. Journal of Materials in Civil Engineering, 23 (6), 812–822. doi: 10.1061/(ASCE)MT.1943-5533.0000233
  • Sinha, A., Nairn, J. A. and Gupta, R. (2011c) Thermal degradation of the bending strength of plywood and oriented strand board: A kinetics approach. Wood Science and Technology, 45, 315–330. doi: 10.1007/s00226-010-0329-3
  • Vestol, G. I. and Hoibo, O. A. (2001) Prediction of knot diameter in Picea abies (L.) Karst. Holz als Roh- und Werkstoff, 59, 129–136. doi: 10.1007/s001070050484
  • Winandy, J. E. and Lebow, P. K. (1996) Kinetics models for thermal degradation of strength of fire-retardant treated wood. Wood and Fiber Science, 28 (1), 39–52.
  • Young, S. A. and Clancy, P. (2001) Structural modeling of light-timber framed walls in fire. Journal of Fire Safety, 36, 241–268. doi: 10.1016/S0379-7112(00)00053-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.