247
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Technological properties of glulam beams made from hydrothermally treated poplar wood

, &
Pages 36-44 | Received 03 Apr 2016, Accepted 23 Sep 2016, Published online: 28 Nov 2016

References

  • Angst, V. and Malo, K. A. (2012) The effect of climate variations on glulam – an experimental study. European Journal of Wood and Wood Products, 70(5), 603–613. doi: 10.1007/s00107-012-0594-y
  • ASTM D 143-09 (2009) Standard methods of testing small clear specimens of timber.
  • ASTM D 198-02 (2002) Standard test methods for static tests of lumber in structural sizes.
  • ASTM D 905-03 (2003) Standard test method for strength properties of adhesives bond in shear by compression loading.
  • ASTM D 1101-97a (2006) Standard test methods for integrity of adhesive joints in structural laminated wood products for exterior use.
  • ASTM D 2395-93 (1997) Standard test methods for specific gravity of wood and wood-based materials.
  • ASTM D 3737-12 (2012) Standard practice for establishing allowable properties for structural glued laminated timber (glulam).
  • ASTM D 4442-92 (2003) Standard test methods for direct moisture content measurement of wood and wood-base materials.
  • ASTM D 4800-94 (2015) Standard guide for classifying and specifying adhesives.
  • ASTM D 4933-99 (2004) Standard guide for moisture conditioning of wood and wood-based materials.
  • Boonstra, M. J. and Tjeerdsma, B. F. (2006) Chemical analysis of heat treated softwoods. Holz als Roh- und Werkstoff, 64(3), 204–211. doi: 10.1007/s00107-005-0078-4
  • Boonstra, M., Rijsdijk, F., Sander, C., Kegel, E., Tjeerdsma, B., Militz, H., Van, J. and Stevens, M. (2006a) Microstructural and physical aspects of heat treated wood. Part 1. Softwoods. Maderas Ciencia y tecnología, 8(3), 193–208.
  • Boonstra, M., Rijsdijk, F., Sander, C., Kegel, E., Tjeerdsma, B., Militz, H., Van, J. and Stevens, M. (2006b) Microstructural and physical aspects of heat treated wood. Part 2. Hardwoods. Maderas. Ciencia y tecnología, 8(3), 209–218.
  • Brady, D. E. and Kamke, F. A. (1988) Effects of hot-pressing parameters on resin penetration. Forest Products Journal, 38(11/12), 63–68.
  • Christiansen, A. W. (1994) Effect of overdrying of yellow-poplar veneer on physical properties and bonding. Holz als Roh- und Werkstoff, 52(3), 139–149. doi: 10.1007/BF02615210
  • Dubey, M. K., Pang, S. and Walker, J. (2010) Color and dimensional stability of oil heat-treated radiata pine wood after accelerated UV weathering. Forest Products Journal, 60(5), 453–459. doi: 10.13073/0015-7473-60.5.453
  • Edalat, H., Faezipour, M., Thole, V. and Kamke, F. A. (2014) A new quantitative method for evaluation of adhesive penetration pattern in particulate wood-based composites: Elemental counting method. Wood Science and Technology, 48, 703–712. doi: 10.1007/s00226-014-0635-2
  • EN 302-3 (2004) Adhesives for load-bearing timber structures – test methods – part 3: Determination of the effect of acid damage to wood fibers by temperature and humidity cycling on the transverse tensile strength.
  • Esteves, B. and Pereira, H. (2009) Wood modification by heat treatment: A review. Bioresource Technology, 4(1), 370–404.
  • FPL (1999) Wood Handbook – Wood as an Engineering Material. Gen Tech Rep FPL-GTR-113 (Madison, WI: USDA Forest Service, Forest Products Laboratory), 463 pp.
  • Gerardin, P., Petric, M., Petrissans, M., Lambert, J. and Ehrhrardt, J. J. (2007) Evolution of wood surface free energy after heat treatment. Polymer Degradation and Stability, 92(4), 653–657. doi: 10.1016/j.polymdegradstab.2007.01.016
  • Gündüz, G., Aydemir, D. and Karakas, G. (2009) The effect of thermal treatment on the mechanical properties of wild pear (Pyrus elaeagnifolia) wood and changes in physical properties. Materials & Design, 30(10), 4391–4395. doi: 10.1016/j.matdes.2009.04.005
  • Hakkou, M., Pétrissans, M., Zoulalian, A. and Gérardin, P. (2005a) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer Degradation and Stability, 89(1), 1–5. doi: 10.1016/j.polymdegradstab.2004.10.017
  • Hakkou, M., Pétrissans, M., Bakali, I. E., Gérardin, P. and Zoulalin, A. (2005b) Wettability changes and mass loss during heat treatment of wood. Holzforschung, 59(1), 35–37. doi: 10.1515/HF.2005.006
  • He, M., Zhang, J., Li, Z. and Li, M. (2016) Production and mechanical performance of scrimber composite manufactured from poplar wood for structural applications. Journal of Wood Science. doi:10.1007/s10086–016-1568-1
  • Heräjärvi, H., Möttönen, V., Reinikkala, M. and Stod, R. (2014) Absorption-desorption behavior and dimensional stability of untreated, CC impregnated and pine oil treated glulam made of scots pine and Norway spruce. International Biodeterioration and Biodegradation, 86(3), 66–70. doi: 10.1016/j.ibiod.2013.06.028
  • Herawati, E., Massijaya, Y. and Nugroho, N. (2010) Performance of glued-laminated beams made from small diameter fast-growing tree species. Journal of Biological Sciences, 10(1), 37–42. doi: 10.3923/jbs.2010.37.42
  • Hill, C. A. S. (2006) Wood Modification: Chemical, Thermal and Other Processes (Chichester, UK: John Wiley & Sons).
  • Hillis, W. E. (1984) High temperature and chemical effects on wood stability. Wood Science and Technology, 18(4), 281–293. doi: 10.1007/BF00353364
  • Hu, Y., Rogunova, M., Topolkaraev, V., Hiltner, A. and Baer, E. (2003) Aging of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity. Polymer, 44(19), 5701–5710. doi: 10.1016/S0032-3861(03)00614-1
  • Jennings, J. D., Zink-Sharp, A., Frazier, C. E. and Kamke, F. A. (2006) Properties of compression-densified wood, Part II: Surface energy. Journal of Adhesion Science and Technology, 20(4), 335–344. doi: 10.1163/156856106776381802
  • Jönsson, J. H. (2004) Internal stresses in the cross-grain direction in glulam induced by climate variations. Holzforschung, 58(2), 154–159.
  • Kocaefe, D., Poncsak, S., Tang, J. and Bouazara, M. (2010) Effect of heat treatment on the mechanical properties of North American Jack pine: Thermogravimetric study. Journal of Materials Science, 45, 681–687. doi: 10.1007/s10853-009-3985-7
  • Korkut, S., Akgül, M. and Dünder, T. (2007) The effects of heat treatment on some technological properties of scots pine wood. Bioresource Technology, 99(6), 1861–1868. doi: 10.1016/j.biortech.2007.03.038
  • Kutnar, A., Kamke, F. A. and Sernek, M. (2009) Density profile and morphology of viscoelastic thermal compressed wood. Wood Science and Technology, 43(1–2), 57–68. doi: 10.1007/s00226-008-0198-1
  • Li, Z., He, M., Tao, D. and Li, M. (2016) Experimental buckling performance of scrimber composite columns under axial compression. Composites Part B: Engineering, 86, 203–213. doi: 10.1016/j.compositesb.2015.10.023
  • Liang, S. Q. and Feng, F. Y. (2007) Comparative study on three dynamic modulus of elasticity and static modulus of elasticity for Lodgepole pine lumber. Journal of Forestry Research, 18(4), 309–312. doi: 10.1007/s11676-007-0062-4
  • Mirzaei, G. H., Mohebby, B. and Tasooji, M. (2012) The effect of hydrothermal treatment on bond shear strength of beech wood. European Journal of Wood and Wood Products, 70(5), 705–709. doi: 10.1007/s00107-012-0608-9
  • Mohebby, B. and Sanaei, I. (2005) Influences of the Hydro-thermal Treatment on Physical Properties of Beech Wood (Fagus orientalis) (The International Research Group on Wood Protection, IRG Document No. IRG/WP 05–40303).
  • Mohebby, B., Kevily, H. and Kazemi-Najafi, S. (2014) Oleothermal modification of fir wood with a combination of soybean oil and maleic anhydride and its effects on physico-mechanical properties of treated wood. Wood Science and Technology, 48(4), 797–809. doi: 10.1007/s00226-014-0640-5
  • Németh, R., Ott, A., Takáts, P. and Bak, M. (2013) The effect of moisture content and drying temperature on the colour of two poplars and Robinia wood. Bioresources, 8(2), 2074–2083. doi: 10.15376/biores.8.2.2074-2083
  • Olek, W. and Bonarski, J. T. (2008) Texture changes in thermally modified wood. Archives of Metallurgy and Materials, 53(1), 207–211.
  • Ozcan, S., Ozcifci, A., Hiziriglu, S. and Toker, H. (2012) Effects of heat treatment and surface roughness on bonding strength. Construction and Building of Materials, 33, 7–13. doi: 10.1016/j.conbuildmat.2012.01.008
  • Palermo, G., Latorraca, J., Moura, L., Nolasco, A., Carvalho, A. and Garcia, R. (2014) Surface roughness of heat treated Eucalyptus grandis wood. Maderas. Ciencia y tecnología, 16(1), 3–12.
  • Ranta-Maunus, A. (2003) Effects of climate and climate variations on strength. In S. Thelandersson and H. J. Larsen (eds.) Timber Engineering (Chichester: Wiley), 3rd ed., pp. 153–167.
  • Sernek, M., Resnik, J. and Kamke, F. (1999) Penetration of liquid urea–formaldehyde adhesive into beech wood. Wood and Fiber Science, 31(1), 41–48.
  • Sernek, M., Kamke, F. A. and Glasser, W. G. (2004) Comparative analysis of inactivated wood surfaces. Holzforschung, 58(1), 22–31. doi: 10.1515/HF.2004.004
  • Shukla, S. R. and Kamdem, D. P. (2009) Properties of laboratory made yellow poplar (Liriodendron tulipifera) laminated veneer lumber: Effect of the adhesives. European Journal of Wood and Wood Products, 67, 397–405.
  • Tjeerdsma, B. F. and Militz, H. (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh- und Werkstoff, 63(2), 102–111. doi: 10.1007/s00107-004-0532-8
  • Weiland, J. J. and Guyonnet, R. (2003) Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Roh- Werkst, 61(3), 216–220.
  • Widmann, R., Beikircher, W., Cabo, J. L. and Steiger, R. (2014) Bending strength and stiffness of glulam beams made of thermally modified beech timber. In S. Aicher and H. Garrecht (eds.) Materials and Joints in Timber Structures (Heidelberg: Springer), 1st ed., pp. 569–576.
  • Wiggins, J. S., Hassan, M. K., Mauritz, K. A. and Storey, R. F. (2006) Hydrolytic degradation of poly(d,l-lactide) as a function of end group: Carboxylic acid vs. hydroxyl. Polymer, 47(6), 1960–1969. doi: 10.1016/j.polymer.2006.01.021
  • Xie, Y., Fu, Q., Wang, Q., Xiao, Z. and Militz, H. (2013) Effects of chemical modification on the mechanical properties of wood. European Journal of Wood and Wood Products, 71(4), 401–416. doi: 10.1007/s00107-013-0693-4
  • Yang, T. H., Lin, C. H., Wang, S. Y. and Lin, F. C. (2012) Effects of ACQ preservative treatment on the mechanical properties of hardwood glulam. European Journal of Wood and Wood Products, 70(5), 557–564. doi: 10.1007/s00107-011-0584-5
  • Yildiz, S. and Gümüşkaya, E. (2007) The effect of thermal modification on crystalline structure of cellulose in soft and hardwood. Building and Environment, 42(1), 62–67. doi: 10.1016/j.buildenv.2005.07.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.