87
Views
5
CrossRef citations to date
0
Altmetric
Articles

The tuneable rubberwood: roles of impregnated polymer level

&
Pages 397-406 | Received 24 Aug 2019, Accepted 23 May 2020, Published online: 10 Jun 2020

References

  • Ali, M. A., Suman, K. S. and Rao, V. K. (2012) Detrmination of wear resistance of neem, mango and cork wood polyacrylonitrile composites. Global Journal of Research in Engineering, 12(4), 42–46.
  • American Society for Testing and Materials (2016) Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials (West Conshohocken, PA: American Society for Testing and Materials), ASTM D4442-16.
  • Ang, A., Zaidon, A., Bakar, E. S., Hamami, S. M. and Anwar, U. M. K. (2009) Enhancing the properties of mahang (Macaranga spp.) wood through acrylic treatment in combination with crosslinker. Modern Applied Science, 3(11), 1–10. doi: https://doi.org/10.5539/mas.v3n11p2
  • Askeland, D. R. (1996) Construction Materials: the Science and Engineering of Materials (3rd ed.) (New York: Chapman & Hall).
  • Broda, M. (2018) Biological effectiveness of archaeological oak wood treated with methyltrimethoxysilane and PEG against brown-rot fungi and moulds. International Biodeterioration and Biodegradation, 134, 110–116. doi: https://doi.org/10.1016/j.ibiod.2018.09.001
  • Devi, R. R. and Maji, T. K. (2002) Studies of properties of rubber wood with impregnation of polymer. Bulletin of Materials Science, 25(6), 527–531. doi: https://doi.org/10.1007/BF02710543
  • Devi, R. R. and Maji, T. K. (2007) Effect of glycidyl methacrylate on the physical properties of wood–polymer composites. Polymer Composites Journal, 28(1), 1–5. doi: https://doi.org/10.1002/pc.20265
  • Devi, R. R. and Maji, T. K. (2013) In situ polymerized wood polymer composite: effect of additives and nanoclay on the thermal mechanical properties. Materials Research, 16(4), 954–963. doi: https://doi.org/10.1590/S1516-14392013005000071
  • Esteves, B., Nunes, L., Domingos, I. and Pereira, H. (2014) Improvement of termite resistance, dimensional stability and mechanical properties of pine wood by paraffin impregnation. European Journal of Wood and Wood Products, 72(5), 609–615. doi: https://doi.org/10.1007/s00107-014-0823-7
  • Guo, H., Xu, C., Lin, L., Wang, Q. and Fu, F. (2011) The composite wood by poplar wood impregnated with Na2SiO3-polyacylamind hybrid solution. Science and Engineering of Composite Materials, 18(3), 151–155. doi: https://doi.org/10.1515/secm.2011.025
  • Hadi, Y. S., Rahayu, I. S. and Danu, S. (2013) Physical and mechanical properties of methyl methacrylate impregnated jabon wood. Journal of the Indian Academy of Wood Science, 10(2), 77–80. doi: https://doi.org/10.1007/s13196-013-0098-3
  • Haygreen, J. G. and Bowyer, J. L. (1989) Forest Products and Wood Science (2nd ed.) (Iowa: Iowa State University Press).
  • Hazarika, A., Devi, R. R. and Maji, T. K. (2012) Studies on properties of softwood (Ficus hispida)/PMMA nanocomposites reinforced with polymerizable surfactant-modified nanoclay. Polymer Bulletin, 68(7), 1989–2008. doi: https://doi.org/10.1007/s00289-012-0706-1
  • Hazarika, A. and Maji, T. K. (2014) Modification of softwood by monomers and nanofillers. Defence Science Journal, 64(3), 262–272. doi: https://doi.org/10.14429/dsj.64.7325
  • Hill, C. A. S. (2006) Wood Modification: Chemical, Thermal and Other Processes (Bangor: University of Wales, School of Agricultural and Forest Science).
  • International Organization for Standardization (1975) Wood-determination of Ultimate Strength in Static Bending, vol. 60.04 (p. 681) (Geneva: International Organization for Standardization), ISO 3133.
  • International Organization for Standardization (1976) Wood-determination of Ultimate Shearing Stress Parallel to Grain (Geneva: International Organization for Standardization), ISO 3347.
  • International Organization for Standardization (1985) Wood-testing in Compression Perpendicular to Grain (Geneva: International Organization for Standardization), ISO 3132.
  • International Organization for Standardization (2014) Physical and Mechanical Properties of Wood-Test Methods for Small Clear Wood Specimens (Geneva: International Organization for Standardization), ISO 13061-2.
  • Islam, M. S., Hamdan, S., Ahmad, M. B., Hasan, M., Hassan, A., Haafiz, M. K. and Jawaid, M. (2014) Effect of PVA-co-MMA copolymer on the physical, mechanical, and thermal properties of tropical wood materials. Advances in Materials Science and Engineering, 2014, 1–8. doi: https://doi.org/10.1155/2014/626850
  • Islam, M. S., Hamdan, S., Jusoh, I., Rahman, M. R. and Talib, Z. A. (2011) Dimensional stability and dynamic young’s modulus of tropical light hardwood chemically treated with methyl methacrylate in combination with hexamethylene diisocyanate cross-linker. Industrial Engineering Chemistry Research, 50(7), 3900–3906. doi: https://doi.org/10.1021/ie1021859
  • Matan, N. and Kyokong, B. (2003) Effect of moisture content on some physical and mechanical properties of juvenile rubberwood (Hevea brasiliensis Muell. Arg.). Science and Technology, 25(3), 327–340.
  • Mattos, B., Serrano, L., Gatto, D., Magalhaes, W. L. and Labidi, J. (2014) Thermochemical and hygroscopicity properties of pinewood treated by in situ copolymerisation with methacrylate monomer. Thermochimica Acta, 596, 70–78. doi: https://doi.org/10.1016/j.tca.2014.09.018
  • Mohamad, J. S., Rozman, H. D. and Rahim, S. (2007) Rubberwood-polymer composites: the effect of chemical impregnation on the mechanical and physical properties. Malaysian Polymer Journal, 2(2), 1–11.
  • Rahman, M. R., Lai, J. C. H., Hamdan, S., Ahmed, A. S., Baini, R. and Saleh, S. F. (2013) Combined styrene/MMA/nanoclay cross-linker effect on wood-polymer composites (WPCs). Bioresource Technology, 8(3), 4227–4237.
  • Ratnasingam, J., Ioras, F. and Macpherson, T. H. (2007) Influence of wood species on the perceived value of wooden furniture: the case of rubberwood. Holz als Roh-und Werkstoff, 65(6), 487–489. doi: https://doi.org/10.1007/s00107-007-0186-4
  • Rowell, R. M. (2013) Handbook of Wood Chemistry and Wood Composites (2nd ed). New York: Taylor & Francis).
  • Ruayruay, W. and Khongtong, S. (2014) Impregnation of natural rubber into rubber wood: a green wood composite. BioResources, 9(3), 5438–5447. doi: https://doi.org/10.15376/biores.9.3.5438-5447
  • Siau, J. F. (1995) Wood: Influence of Moisture on Physical Properties (New York: Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University).
  • Skaar, C. (1972) Water in Wood (New York: State University College of Forestry at Syracuse University).
  • Standardization Administration of China (2009a) Method for Determination of the Shrinkage of Wood (Beijing: Standardization Administration of China), GB/T 1932-2009.
  • Standardization Administration of China (2009b) Method for Determination of the Swelling of Wood (Beijing: Standardization Administration of China), GB/T 1934.2-2009.
  • Wen, M. Y., Kang, C. W. and Park, H. J. (2014) Impregnation and mechanical properties of three softwoods treated with a new fire retardant chemical. Wood Science Journal, 60(5), 367–375. doi: https://doi.org/10.1007/s10086-014-1408-0
  • Wu, G., Shah, D. U., Janecek, E. R., Burridge, H. C., Reynolds, T. P., Fleming, P. H. and Scherman, O. A. (2017) Predicting the pore-filling ratio in lumen-impregnated wood. Wood Science and Technology, 51(6), 1277–1290. doi: https://doi.org/10.1007/s00226-017-0933-6
  • Xiaoying, D., Yongfeng, L., Yunlin, F., Jiali, G. and Yixing, L. (2012) Characterization and durability of wood-polymer composite prepared by in-situ polymerization of methyl methacrylate and styrene. Scientific Research and Essays, 7(24), 2143–2149.
  • Xu, J., Li, B., Zhao, T., Li, T. and Wang, L. (2019) Thermal and hydrophobic properties of glycerol stearate-modified (Pinus radiata wood). Journal of Forestry Research, 30(4), 1–5.
  • Yildiz, U. C., Yildiz, S. and Gezer, E. D. (2005) Mechanical properties and decay resistance of wood-polymer composites prepared from fast growing species in Turkey. BioResource Technology, 96(6), 1003–1011. doi: https://doi.org/10.1016/j.biortech.2004.09.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.