1,709
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical behaviour of sawn timber of silver birch under compression loading

ORCID Icon & ORCID Icon
Pages 121-128 | Received 26 Feb 2020, Accepted 22 Jul 2020, Published online: 07 Aug 2020

References

  • Bhat, K. M. (1980) Variation in structure and selected properties of Finnish birch wood: I. Interrelationships of some structural features, basic density and shrinkage [Betula pendula, B. pubescens]. Silva Fennica, 14(4), 384–396. doi: https://doi.org/10.14214/sf.a15032
  • Bhat, K. M. and Kärkkäinen, M. (1981) Variation in structure and selected properties of Finnish birch wood: iv. Fibre and vessel length in branches, stems and roots [Betula pendula, B. pubescens]. Silva Fennica, 15(1), 10–17.
  • Blaß, H. J. (2005) Biegefestigkeit von brettschichtholz aus buche. Univ.-Verl. Karlsruhe.
  • Blaß, H. J. and Görlacher, R. (2004) Compression perpendicular to the grain. In Proceedings of WCTE2004, Lahti, Finland. vol. 2, pp. 435–440.
  • Bossuyt, S. (2013) Optimized patterns for digital image correlation. In H. Jin, C. Sciammarella, C. Furlong and S. Yoshida (eds.) Imaging Methods for Novel Materials and Challenging Applications, Volume 3 (New York: Springer New York), pp. 239–248.
  • CEN, (1997). EN 1310: Round and sawn timber. method of measurement of features. European committee for standardization.
  • CEN, (2012) EN 408: Timber structures -structural timber and glued laminated timber – determination of some physical and mechanical properties. European committee for standardization.
  • Collins, S. and Fink, G. (2018) Mechanical properties of birch timber under compression loading parallel to the grain. In Proceedings of WCTE2018, Seoul, Republic of Korea.
  • Dadzie, P. K. and Amoah, M. (2015) Density, some anatomical properties and natural durability of stem and branch wood of two tropical hardwood species for ground applications. European Journal of Wood and Wood Products, 73(6), 759–773. doi: https://doi.org/10.1007/s00107-015-0925-x
  • Dinwoodie, J. (2000) Timber: Its Nature and Behaviour, 2nd ed. Abingdon: CRC Press.
  • Duchesne, I., et al. (2016) Wood mechanical properties and discoloured heartwood proportion in sugar maple and yellow birch grown in New Brunswick. BioResources, 11(1), 2007–2019. doi: https://doi.org/10.15376/biores.11.1.2007-2019
  • Dunham, R. A., Cameron, A. D. and Petty, J. A. (1999) The effect of growth rate on the strength properties of sawn beams of silver birch (Betula pendula Roth). Scandinavian Journal of Forest Research, 14(1), 18–26. doi: https://doi.org/10.1080/02827589908540805
  • Ehrhart, T., et al. (2016a) Experimental investigation of tensile strength and stiffness indicators regarding European beech timber. In Proceedings of WCTE 2016, Vienna, Austria.
  • Ehrhart, T., et al. (2016b) Strength grading of European beech lamellas for the production of GLT & CLT. In Proceedings of INTER Meeting Forty-Nine, Graz, Austria.
  • Fink, G. (2014) Influence of varying material properties on the load-bearing capacity of glued laminated timber. Thesis (PhD). ETH Zurich.
  • Fink, G., Stadelmann, P. and Frangi, A. (2018) Tensile capacity of finger joint connections -- considering censored data. In Proceedings of WCTE2018, Seoul, Republic of Korea.
  • Foley, C. (2003) Modeling the effects of knots in structural timber. Thesis (PhD). Lund University.
  • Frese, M. and Riedler, T. (2010) Untersuchung von buchenschnittholz (fagus sylvatica l.) hinsichtlich der eignung für brettschichtholz (investigation of beech lumber (Fagus sylvatica L.) in regard to suitability for glulam). European Journal of Wood and Wood Products, 68(4), 445–453. doi: https://doi.org/10.1007/s00107-009-0385-2
  • Frühwald, K. and Schickhofer, G. (2005) Strength grading of hardwoods. In Proceedings of the 14th International Symposium on Nondestructive Testing of Wood. vol. 2.
  • Hallaksela, A. M. and Niemistö, P., 1998. Stem discoloration of planted silver birch. Scandinavian Journal of Forest Research, 13 (1-4), 169–176. doi: https://doi.org/10.1080/02827589809382973
  • Heräjärvi, H. (2002) Properties of birch (Betula pendula, B. pubescens) for sawmilling and further processing in Finland. The Finnish Forest Research Institute, Research Papers 871.
  • Heräjärvi, H. (2004a) Static bending properties of Finnish birch wood. Wood Science and Technology, 37(6), 523–530. doi: https://doi.org/10.1007/s00226-003-0209-1
  • Heräjärvi, H. (2004b) Variation of basic density and Brinell hardness within mature Finnish Betula pendula and B. pubescens stems. Wood and Fiber Science, 36(2), 216–227.
  • Hoffmeyer, P. (1987) The role of grain angle, knots, tension wood, compression wood, and other anomalies on the mechanical properties of wood. Thesis (PhD). Technical University of Denmark.
  • Hoffmeyer, P., Damkilde, L. and Pedersen, T. N. (2000) Structural timber and glulam in compression perpendicular to grain. Holz Als Roh-und Werkstoff, 58(1-2), 73–80. doi: https://doi.org/10.1007/s001070050390
  • INSTA142, (2010), Nordic visual strength grading rules for timber. Suomen Standardisoimisliitto SFS.
  • Isaksson, T. (1999) Modelling the variability of bending strength in structural timber – length and load configuration effects. Thesis (PhD). Lund University.
  • Jalava, M. (1945) Suomalaisen männyn, kuusen, koivun ja haavan lujuusominaisuuksista (strength properties of finnish pine, spruce, birch and aspen). Metsätieteellisen Tutkimuslaitoksen, 33.
  • Jeitler, G., Augustin, M. and Schickhofer, G. (2016) Birch— GLT+ CLT-mechanical properties of glued laminated timber and cross laminated timber produced with the wood species birch. In Proceedings of WCTE 2016, Vienna, Austria.
  • Johansson, E. (2013) Computed tomography of sawlogs: knot detection and sawing optimization. Thesis (PhD). Luleå tekniska universitet.
  • Kilde, V., et al. (2006) Bjørk i synlige konstruksjoner (Birch in visible constructions). Norsk Treteknisk Institutt, Rapport nr. 67.
  • Lavers, G. M. (1983) The strength properties of timber, building research establishment report. London: Department of the Environment, Building Research Establishment.
  • Luostarinen, K. and Verkasalo, E. (2000) Birch as sawn timber and in mechanical further processing in Finland. A literature study. Silva Fennica, 39(1), 11–47.
  • Ollinmaa, P. J. (1955) Koivun vetopuun anatomisesta rakenteesta ja ominaisuuksista (On the anatomic structure and properties of the tension wood in birch). Helsinki: Suomen metsätieteellinen seura.
  • Poussa, M., Tukiainen, P. and Ranta-Manus, A. (2007) Experimental study of compression and shear strength of spruce timber. In Proceedings of CIB-W18-Timber Structures. Univ. of Karlsruhe.
  • Säll, H., Källsner, B. and Olsson, A. (2007) Bending strength and stiffness of aspen sawn timber. In: COST Action E53 The First Conference: Quality Control for Wood and Wood Products. Warsaw University of Life Sciences.
  • Schlotzhauer, P., et al. (2017) Effect of size and geometry on strength values and MOE of selected hardwood species. Wood Material Science & Engineering, 12(3), 149–157. doi: https://doi.org/10.1080/17480272.2015.1073175
  • Schlotzhauer, P., et al. (2018) Comparison of three systems for automatic grain angle determination on European hardwood for construction use. European Journal of Wood and Wood Products, 76(3), 911–923. doi: https://doi.org/10.1007/s00107-018-1286-z
  • Shigo, A. L. (1997) A New Tree Biology Facts Photos, and Philosophies on Trees and Their Problems and Proper Care. Eighth Printing (Durham, NE: Shigo and Trees, Associates).
  • Solli, K. H. (2004) Tensile strength of Nordic birch. In: Proceedings of Meeting Thirty-seven of CIB-W18, paper 37-6. vol. 1.
  • Vega, A., et al. (2012) Modelling of the mechanical properties of Castanea sativa Mill structural timber by a combination of non-destructive variables and visual grading parameters. European Journal of Wood and Wood Products, 70(6), 839–844. doi: https://doi.org/10.1007/s00107-012-0626-7
  • Wanninger, F., Frangi, A. and Steiger, R. (2015) Bearing stiffness in wood-to-wood compression joints. Engineering Structures, 101, 631–640. doi: https://doi.org/10.1016/j.engstruct.2015.07.032