1,618
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Comparison between static modulus of elasticity, non-destructive testing moduli of elasticity and stress-wave speed in white spruce and lodgepole pine wood

ORCID Icon, &
Pages 345-355 | Received 14 Oct 2019, Accepted 02 Jan 2021, Published online: 21 Jan 2021

References

  • Alteyrac, J., Cloutier, A., Ung, C. and Zhang, S. Y. (2006) Mechanical properties in relation to selected wood characteristics of black spruce. Wood Fiber Scien, 38, 229–237.
  • Alteyrac, J., Zhang, S. Y., Cloutier, A. and Ruel, J. C. (2005) Influence of stand density on ring width and wood density at different sampling heights in black spruce (Picea mariana (Mill.) B.S.P.). Wood Fiber Scien, 37, 83–94.
  • Andrews, M. (2000) Where are we with sonics? In Proceedings, Capturing the Benefits of Forestry Research: Putting Ideas to Work, Workshop 2000 (Christchurch, New Zealand: Wood Technology Research Center, University of Canterbury). October 18, 2000 pp 57–61
  • Argus Electronic GmbH (2017) Picus Sonic Tomograph, Version 3, Hardware Manual. Last viewed May 2019. URL www.argus-electronic.de/en/content/download/394/4028/file/PiCUS+3+manual.pdf.
  • ASTM (2014) ASTM D143-14, Standard Test Methods for Small Clear Specimens of Timber (West Conshohocken, PA: ASTM International).
  • Bailleres, H., Calchéra, G., Demay, L. and Vernay, M. (1998) Classement mécanique des bois guyanais de structure selon trois techniques non destructives (mechanical classification of structural Guyanese timber with three non-destructive techniques). Bois et Forets des Tropiques, 257, 47–62.
  • Bell, E. R., Peck, E. C. and Krueger, N. T. (1954) Modulus of Elasticity of Wood Determined By Dynamic Methods. Report n° 1977 (Madison, Wisconsin, U.S: Department of Agriculture, Forest Service, Forest Products Laboratory).
  • Brancheriau, L., Bailleres, H. and Guitard, D. (2002) Comparison between modulus of elasticity values calculated using 3 and 4 point bending tests on wooden samples. Wood Science and Technology, 36, 367–383. doi:10.1007/s00226-002-0147-3
  • Brändström, J. (2001) Micro and ultrastructural aspects of Norway spruce tracheids: A review. IAWA Journal, 22, 333–353.
  • Brashaw, B. K., Bucur, V., Divos, F., Gonçalves, R., Lu, J., Meder, R., Pellerin, R. F., Potter, S., Ross, R. J., Wang, X. and Yin, Y. (2009) Nondestructive testing and Evaluation of wood: A Worldwide research Update. Forest Products Journal, 59(3), 7–14.
  • Bucur, V. (2006) Acoustics of Wood, 2nd ed.; Springer Series in Wood Science, Springer-Verlag Berlin Heidelberg, 2006; p. XVIII, 394.
  • CECOBOIS (2013) Toujours Plus Haut (Always Higher) Vol 5, (Québec, Canada: CECOBOIS).
  • Bucur, V., Lanceleur, P. and Roge, B. (2002) Acoustic properties of wood in tridimensional representation of slowness surfaces. Ultrasonics, 40, 537–541. doi:10.1016/S0041-624X(02)00182-8
  • Chen, Z. Q., Karlsson, B., Mörling, T., et al. (2016) Genetic analysis of fiber dimensions and their correlation with stem diameter and solid-wood properties in Norway spruce. Tree Genet Genomes, 12, 123, 1–12. doi:10.1007/s11295-016-1065-0
  • Chitchumnong, P., Brooks, S. C. and Stafford, G. D. (1989) Comparison of three- and four-point flexural strength testing of denture-base polymers. Dental Materials, 5, 2–5.
  • Defo, M., Duchesne, I. and English, B. (2010) Element 5: Sensing Attributes for Value Chain Optimization – Validation of Silviscan Modulus of Elasticity (Vancouver, BC, Canada: Report, FPInnovations).
  • Eckard, J. T., Isik, F., Bullock, B., Li, B. and Gumpertz, M. (2010) Selection efficiency for solid wood traits in Pinus taeda using time-of-flight acoustic and micro-drill resistance methods. Forest Sci, 56, 233–241.
  • Evans, R. (1999) A variance approach to the x-ray diffractometric estimation of microfibril angle in wood. Appita Journal, 52, 283–294.
  • Evans, R. (2006) Wood stiffness by x-ray diffractometry. In D. Stokke, and L. H. Groom (eds.), Characterisation of the Cellulosic Cell Wall (Ames, Iowa, USA: Southern Research Station, University of Iowa and the Society of Wood Science and Technology. Blackwell Publishing). Proceedings of the workshop, Grand Lake, Colorado, 25–27 August 2003. Chapter 11. pp. 1–8
  • Evans, R., Hughes, M. and Menz, D. (1999) Microfibril angle variation by scanning X-ray diffractometry. Appita Journal, 52, 363–367.
  • Evans, R. and Ilic, J. (2001) Rapid prediction of wood stiffness from microfibril angle and density. Forest Prod J, 51, 53–57.
  • Feeney, F. E., Chivers, R. C., Evertsen, J. A. and Keating, J. (1998) The influence of inhomogeneity on the propagation of ultrasound in wood. Ultrasonics, 36, 449–453.
  • Gerhards, C. (1982) Effect of moisture content and temperature on the mechanical properties of wood: an analysis of immediate effects. Wood Fiber Scien, 14, 4–36.
  • Glass, S. V. and Zelinka, S. L. (2010) Moisture relations and physical properties of wood. In R. J. Ross (ed.), Wood Handbook, Wood as an Engineering Material, General Technical Report FPL–GTR–190 (Madison, WI, USA: USDA Forest Service, Forest Products Laboratory). Chapter 4, 80–98.).
  • Grabianowski, M., Manley, B. and Walker, J. C. F. (2006) Acoustic measurements on standing trees, logs and green lumber. Wood Science and Technology, 40, 205–216. doi:10.1007/s00226-005-0038-5
  • Haines, D. W., Leban, J. M. and Herbé, C. (1996) Determination of Young's modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods. Wood Science and Technology, 30, 253–263. doi:10.1007/BF00229348
  • Hein, P. R. G. and Brancheriau, L. (2018) Comparison between three-point and four-point flexural tests to determine wood strength of eucalyptus specimens. Maderas-Cienc Tecnol, 20, 333–342.
  • Hsu CY (2003) Radiata pine wood anatomy structure and biophysical properties. Dissertation, University of Canterbury.
  • Ide, J. M. (1935) Some dynamic methods for determination of Young's modulus. Review of Scientific Instruments, 6, 296–298. doi:10.1063/1.1751876
  • Jacques, D., Marchal, M. and Curnel, Y. (2004) Relative efficiency of alternative methods to evaluate wood stiffness in the frame of hybrid larch (Larix x eurolepis Henry) clonal selection. Ann Forest Sci, 61, 35–43. doi:10.1051/forest:2003082
  • Jessome, A. P. (2000) Résistance et Propriétés Connexes des Bois Indigènes au Canada (Sainte-Foy, QC, Canada: SP 514-F, Forintek Canada Corp.).
  • Jordan, L., Schimleck, L. R., Clark IIIA., Hall, D. B. and Daniels, R. F. (2007) Estimating optimum sampling size to determine weighted core specific gravity of planted loblolly pine. Can J Forest Res, 37, 2242–2249.
  • Knowles, R. L., Hansen, L. W., Wedding, A. D. and Downes, G. E. (2004) Evaluation of non-destructive methods for assessing stiffness of Douglas fir trees. New Zeal J For Sci, 34, 87–101.
  • Koubaa, A., Isabel, N., Zhang, S., Beaulieu, J. and Bousquet, J. (2005) Transition from juvenile to mature wood in black spruce (Picea mariana (Mill.) B.S.P.). Wood Fiber Scien, 37, 445–455.
  • Lasserre, J.-P., Mason, E. G. and Watt, M. S. (2007) Assessing corewood acoustic velocity and modulus of elasticity with two impact based instruments in 11-year-old trees from a clonal-spacing experiment of Pinus radiata D. Don. Forest Ecol Manag, 239, 217–221. doi:10.1016/j.foreco.2006.12.009
  • Legg, M. and Bradley, S. (2016) Measurement of stiffness of standing trees and felled logs using acoustics: A review. Journal of the Acoustical Society of America, 139, 588–604. doi:10.1121/1.4940210
  • Liang, S. Q. and Fu, F. (2007) Comparative study on three dynamic modulus of elasticity and static modulus of elasticity for lodgepole pine lumber. J Forestry Res, 18, 309–312. doi:10.1007/s11676-007-0062-4
  • Lindström, H., Harris, P., Sorensson, C. T. and Evans, R. (2004) Stiffness and wood variation of 3-year old Pinus radiata clones. Wood Science and Technology, 38, 579–597.
  • Lotan, J. E. and Critchfield, W. B. (1990) Pinus contorta Dougl. ex. Loud. lodgepole pine. In R. M. Burns, and B. H. Honkala (eds.), Silvics of North America. Vol. 1. (Washington, DC, USA: Conifers, USDA, Forest Service, Agriculture Handbook). pp 302–315,
  • Mahon, J. M., Jordan, L., Schimleck, L. R., Clark, A. and Daniels, R. F. (2009) A comparison of sampling methods for a standing tree acoustic device. Southern Journal of Applied Forestry, 33, 62–68.
  • Mansfield, S. D., Parish, R., Di Lucca, C. M., Goudie, J., Kang, K.-Y. and Ott, P. (2009) Revisiting the transition between juvenile and mature wood: a comparison of fibre length, microfibril angle and relative wood density in lodgepole pine. Holzforschung, 63, 449–456. doi:10.1515/hf.2009.069
  • MFFP (2015) Ressources et Industries Forestières: Portrait Statistique 2015 (Québec, Canada: Direction du développement de l'industrie des produits du bois).
  • Middleton, G. R., Munro, B. D. and Sadlish, J. (2000) Influence of Growth Rate on Strength and Related Wood Properties of Boreal White Spruce (Vancouver, B.C.: Forintek Canada Corp.).
  • Mora, C. R., Schimleck, L. R., Mahon, J. M., Isik, F., Clark, A. and Daniels, R. F. (2009) Relationships between acoustic variables and different measures of stiffness in standing Pinus taeda trees. Can J Forest Res, 39, 1421–1429. doi:10.1139/x09-062
  • Mvolo, C. S., Koubaa, A., Beaulieu, J., Cloutier, A., Defo, M. and Yemele, M.-C. (2019) Phenotypic correlations among growth and selected wood properties in white spruce (Picea glauca (Moench) Voss). Forests, 10(7), 589. doi:10.3390/f10070589
  • Mvolo, C. S., Koubaa, A., Beaulieu, J., Cloutier, A. and Mazerolle, M. J. (2015a) Variation in wood quality in white spruce (Picea Glauca (Moench) Voss). part I. Defining the juvenile–mature wood transition based on tracheid length. Forests, 6(1), 183–202. doi:10.3390/f6010183
  • Mvolo, C. S., Koubaa, A., Defo, M., Beaulieu, J., Yemele, M.-C. and Cloutier, A. (2015b) Prediction of tracheid length and diameter in white spruce (Picea glauca). IAWA Journal, 36, 186–207. doi:10.1163/22941932-00000095
  • Nienstaedt, H. and Zasada, J. C. (1990) Picea glauca (Moench) Voss white spruce. In R. M. Burns, and B. H. Honkala (eds.), Silvics of North America Conifers (Washington, DC, USA: USDA, Forest Service, Agriculture Handbook). Vol. 1. 654pp 204–226,
  • Ouis, D. (2002) On the frequency dependence of the modulus of elasticity of wood. Wood Science and Technology, 36, 335–346.
  • Paradis, N., Auty, D., Carter, P. and Achim, A. (2013) Using a standing-tree acoustic tool to identify forest stands for the production of mechanically-graded lumber. Sensors, 13(3), 3394–3408. doi:10.3390/s130303394
  • Panshin, A. J. and de Zeuuw, C. (1980) Textbook of Wood Technology: Structure, Identification, Properties, and Uses of the Commercial Woods of the United States and Canada (New York, NY, USA: McGraw-Hill Book Co.); 4th ed.; p. 722.
  • R Core Team (2017) R: A Language and Environment for Statistical Computing (Vienna, Austria: R Foundation for Statistical Computing). URL https://www.R-project.org/).
  • Raymond, C. A. (2006) Density assessment of radiata pine: sampling strategy revisited. Holzforschung, 60, 580–582. doi:10.1515/HF.2006.096
  • Raymond, C. A., Joe, B., Evans, R. and Dickson, R. L. (2007) Relationship between timber grade, static and dynamic modulus of elasticity, and SilviScan properties for Pinus radiata in New south Wales. New Zeal J For Sci, 37, 186–196.
  • Reeb, J. and Milota, M. (1999) Moisture Content by the Oven-dry Method for Industrial Testing (Corvallis, OR, USA: WDKA, Oregon State University).
  • Ross, R. J. (2015) Static bending, Transverse Vibration, and longitudinal stress wave Nondestructive Evaluation methods. In R. J. Ross (ed.), Nondestructive Evaluation of Wood: Second Edition. General Technical Report FPL-GTR-238 (Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory), pp 5–19.
  • Ross, R. J. and Pellerin, R. F. (1994) Nondestructive testing for assessing wood members in structures. General technical report FPL; GTR-70, USDA, Forest Products Laboratory, Madison, WI, U.S.A. https://doi.org/10.2737/FPL-GTR-70.
  • Ross, R. J. and Pellerin, R. F. (2015) Inspection of timber structures using stress wave timing nondestructive evaluation tools. In R. J. Ross (ed.), Nondestructive Evaluation of Wood: Second Edition. General Technical Report FPL-GTR-238 (Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory)., pp 5–19.
  • Sattler, D. F., Comeau, P. G. and Achim, A. (2014) Within-tree patterns of wood stiffness for white spruce (Picea glauca (Moench) Voss) and trembling aspen (Populus tremuloides Michx.). Can J Forest Res, 44, 162–171. doi:10.1139/cjfr-2013-0150
  • Sattler, D. F. and Stewart, J. D. (2016) Climate, location, and growth relationships with wood stiffness at the site, tree, and ring levels in white spruce (Picea glauca) in the Boreal Plains ecozone. Can J Forest Res, 46, 1235–1245. doi:10.1139/cjfr-2015-0480
  • Schimleck, L., et al. (2019) Non-destructive evaluation techniques and what they tell us about wood property variation. Forests, 10(9), 1–50. doi:10.3390/f10090728
  • Senalik CA, Schueneman G, Ross RJ (2015) Ultrasonic-based nondestructive evaluation methods for wood. In: Ross, Robert J. (Ed.). Nondestructive Evaluation of Wood: Second Edition. General Technical Report FPL-GTR-238. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, pp 21–51.
  • Stewart, J. D., Jones, T. N. and Noble, R. C. (2006) Long-term Lodgepole Pine Silviculture Trials in Alberta: History and Current Results (Edmonton, AB, Canada: Nat. Resourc. Can, Can. For. Serv. and Foothills Model Forest).
  • Vincent, M., Krause, C. and Koubaa, A. (2011) Variation in black spruce (Picea mariana (Mill.) BSP) wood quality after thinning. Ann Forest Sci, 68, 1115–1125.
  • Wang, M. and Stewart, J. (2012) Determining the transition from juvenile to mature wood microfibril angle in lodgepole pine: a comparison of six different two-segment models. Ann Forest Sci, 69, 927–937. doi:10.1007/s13595-012-0226-z
  • Wang, M. and Stewart, J. D. (2013) Modeling the transition from juvenile to mature wood using modulus of elasticity in lodgepole pine. Western Journal of Applied Forestry, 28, 135–142. doi:10.5849/wjaf.12-026
  • Wang, X., Carter, P., Ross, R. J. and Brashaw, B. K. (2007) Acoustic assessment of wood quality of raw forest materials - A path to increased profitability. For Prod J, 57, 6–14.
  • Wang, X., Ross, R. J., McClellan, M., Barbour, R. J., Erickson, J. R., Forsman, J. W. and McGinnis, G. D. (2004) Strength and Stiffness Assessment of Standing Trees Using a Nondestructive Tress Wave Technique (WI, U.S.A. Madison, WI, U.S: USDA, Forest Products Laboratory, research paper FPL−RP−585 Madison).
  • Wessels, C. B., Malan, F. S. and Rypstra, T. (2011) A review of measurement methods used on standing trees for the prediction of some mechanical properties of timber. Eur J Forest Res, 130, 881–893. doi:10.1007/s10342-011-0484-6
  • Xu, P., Donaldson, L., Walker, J., Evans, R. and Downes, G. (2004) Effects of density and microfibril orientation on the vertical variation of low-stiffness wood in radiata pine butt logs. Holzforschung, 58, 673–677. doi:10.1515/HF.2004.122
  • Zobel, B. J. and Sprague, J. R. (eds.). (1998) Juvenile Wood in Forest Trees (Berlin, Germany: Springer Series in Wood Science. Springer).
  • Zobel, B. J. and Van Buijtenen, J. P. (eds.). (1989) Wood Variation: Its Causes and Control (Berlin, Germany: Springer Series in Wood Science. Springer).