313
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Determining elastic constants of poplar wood (Populus deltoides) by ultrasonic waves and its application in the finite element analysis

, , &
Pages 668-678 | Received 29 May 2020, Accepted 01 May 2021, Published online: 14 May 2021

References

  • ABAQUS (2000) User Manual, Version 6.0. Hibbitt, Karlsson & Sorensen.
  • Archanowicz, E., Kowaluk, G., Niedziński, W. and Beer, P. (2013) Properties of particleboard made of biocomponents from fibrous chips for FEM modeling. Bioresources, 8, 6220–6320. Available at: https://bioresources.cnr.ncsu.edu/resources/properties-of-particleboards-made-of-biocomponents-from-fibrous-chips-for-fem-modeling/
  • ASTM D 143-94 (2000) International standard test methods for small clear specimens of timber. American Society of Testing and Materials, 4, 1–27. Available at: https://www.astm.org/DATABASE.CART/HISTORICAL/D143-94.htm
  • Bader, T. K., Dastoorian, F., Ebrahimi, G., Unger, G., Lahayne, O., Hellmich, C. and Pichler, B. (2016) Combined ultrasonic-mechanical characterization of orthotropic elastic properties of an unrefined bagasse fiber-polypropylene composite. Composites Part B Engineering, 95, 96–104. doi:10.1016/j.compositesb.2016.03.070
  • Bergander, A. and Salmén, L. (2000) Variations in transverse fiber wall properties: relations between elastic properties and structure. Holzforschung, 54, 654–660. doi:10.1515/HF.2000.110
  • Blomqvist, L., Berg, S. and Sandberg, D. (2019) Distortion in laminated veneer products exposed to relative-Humidity variations – Experimental studies and finite-element modelling. Bioresources, 2, 3768–3779. Available at: https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_14_2_3768_Blomqvist_Distortion_Laminated_Veneer_Products_Relative_Humidity
  • Bodig, J. and Jayne, B. A. (1993) Mechanics of Wood and Wood Composites (Malabar: Krieger Publishing Company). Available at: https://trove.nla.gov.au/work/22349993
  • Bucur, V. (1992) Anisotropy characterization of structural flakeboards with ultrasonic methods. Wood and Fiber Science, 24, 337–346. Available at: https://wfs.swst.org/index.php/wfs/article/view/784.
  • Bucur, V. (2006) Acoustics of Wood, 2nd edition (Springer Series in Wood Science; Springer). doi:10.1007/3-540-30594-7
  • Bucur, V., Ansell, M. R., Barlow, C. Y., Pritchard, J., Garros, S. and Deglise, X. (1998) Physical methods for characterizing wood composite panel products. Holzforschung, 52, 553–561. doi:10.1515/hfsg.1998.52.5.553
  • Bucur, V. and Archer, R. R. (1984) Elastic-constants for wood by an ultrasonic method. Wood Science and Technology, 18, 255–265. doi:10.1007/BF00353361
  • Burgert, I. and Eckstein, D. (2001) The tensile strength of isolated wood rays of beech (Fagus sylvatica L.) and its significance for the biomechanics of living trees. Trees – Structure and Function, 15, 168–170. doi:10.1007/s004680000086
  • Dackermann, U., Elsener, R., Li, J. and Crews, K. (2016) A comparative study of using static and ultrasonic material testing methods to determine the anisotropic material properties of wood. Construction and Building Materials, 102, 963–976. doi:10.1016/j.conbuildmat.2015.07.195
  • Goncalves, R., Trinca, A. J. and Pellis, B. P. (2014) Elastic constants of wood determined by ultrassound using three geometries of specimens. Wood Science and Technology, 48, 269–287. doi:10.1007/s00226-013-0598-8
  • Green, D. W. (2001) Encyclopedia of materials: Science and technology (second edition): Wood: strength and stiffness. Materials Science and Materials Engineering, 9732–9736. doi:10.1016/B0-08-043152-6/01766-6
  • Guan, Z. W. and Zhu, E. C. (2009) Finite element modelling of anisotropic elasto-plastic timber composite beams with openings. Engineering Structures, 31, 394–403. doi:10.1016/j.engstruct.2008.09.007
  • Harte, A. M. (2009) Introduction to timber as an engineering material, ICE manual of construction materials. National University of Ireland Galway. Available at: https://www.nuigalway.ie/media/timberengineeringresearchgroup/Harte—2009—Introduction-to-timber-as-an-engineering-material.pdf
  • Işleyen, Ü. K. (2018) Finite element modelling in wood and wood based materials. Proceedings of the International Forest Products Congress Trabzon, Turkey, 26–29 September 2018, ORENKO 2018, Paper ID. 157. Available at: http://www.ktu.edu.tr/dosyalar/orenko2018_821b6.pdf
  • Kafashan, J., Wiącek, J., Abd Rahman, N. and Gan, J. (2019) Two-dimensional particle shapes modelling for DEM simulations in engineering: A review. Granular Matter, 21, 80. doi:10.1007/s10035-019-0935-1
  • Kazemi Najafi, S., Bucur, V. and Ebrahimi, G. (2005) Elastic constants of particleboard with ultrasonic technique. Materials Letters, 59, 2039–2042. doi:10.1016/j.matlet.2005.02.013
  • Keunecke, D. (2008) Elasto-mechanical characterization of yew and spruce wood with regard to structure-property relationships. Doctoral Thesis, ETH ZURICH. doi:10.3929/ethz-a-005629078
  • Keunecke, D., Sonderegger, W., Pereteanu, K., Luthi, T. and Niemz, P. (2007) Determination of young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Science and Technology, 41, 309–327. doi:10.1007/s00226-006-0107-4
  • Khelifa, M. and Celzard, A. (2014) Numerical analysis of flexural strengthening of timber beams reinforced with CFRP strips. Composite Structures, 111, 393–400. doi:10.1016/j.compstruct.2014.01.011
  • Kohlhauser, C. (2009) Elasticity tensor determination by means of ultrasonic pulse transmission: Application ranges in terms of specimen geometry and microstructure, off-diagonal tensor components, as well as different engineering and biomedical materials. Doctoral Thesis, Institute for Mechanics of materials and Structures, Vienna University of Technology. Available at: http://repositum.tuwien.ac.at/obvutwhs/content/titleinfo/1609812
  • Kohlhauser, C. and Hellmich, C. (2012) Determination of Poisson’s ratios in isotropic, transversely isotropic, and orthotropic materials by means of combined ultrasonic-mechanical testing of normal stiffnesses: Application to metals and wood. European Journal of Mechanics – A/Solids, 33, 82–98. doi:10.1016/j.euromechsol.2011.11.009
  • Kriz, R. D. and Stinchcomb, W. W. (1979) Elastic moduli of transversely isotropic graphite fibers and their composites. Experimental Mechanics, 19, 41–49. doi:10.1007/BF02324524
  • Ozyhar, T., Hering, S., Sanabria, S. J. and Niemz, P. (2013) Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Science and Technology, 47, 329–341. doi:10.1007/s00226-012-0499-2
  • Radovic, M., Lara-Curzio, E. and Riester, L. (2004) Comparison of different experimental techniques for determination of elastic properties of solids. Materials Science and Engineering: A, 368, 56–70. doi:10.1016/j.msea.2003.09.080
  • Sandhaas, C. and Van de Kuilen, J. W. (2013) Material model for wood. HERON, 58(2/3), 2013. Available at: http://heronjournal.nl/58-23/5.pdf
  • Schniewind, A. P. and Barrett, J. D. (1972) Wood as a linear orthotropic viscoelastic material. Wood Science and Technology, 6, 43–57. doi:10.1007/BF00351807
  • Sheng, H., Feng, F. H., Lan-ying, L. and Ping-xiang, C. (2012) Application of finite element analysis in properties test of finger-jointed lumber. Proceedings of the 55th International Convention of Society of Wood Science and Technology, Beijing, China. Available at: http://www.swst.org/wp/meetings/AM12/pdfs/papers/PS-
  • Smardzewski, J. (2013) Elastic properties of cellular wood panels with hexagonal and auxetic cores. Holzforschung, 67, 87–92. doi:10.1515/hf-2012-0055
  • Smardzewski, J., Słonina, M. and Maslej, M. (2017) Stiffness and failure behaviour of wood based honeycomb sandwich corner joints in different climates. Composite Structures, 168, 153–163. doi:10.1016/j.compstruct.2017.02.047
  • Susainathan, J., Eyma, F., Luycker, E., Cantarel, A. and Castanie, B. (2019) Numerical modeling of impact on wood-based sandwich structures. Mechanics of Advanced Materials and Structures, doi:10.1080/15376494.2018.1519619
  • Tankut, N., Tankut, A. and Zor, M. (2014) Finite element analysis of wood materials. Drvna Industrija, 65, 159–171. doi:10.5552/drind.2014.1254
  • Ting, T. C. T. and Chen, T. (2005) Poisson’s ratio for anisotropic elastic materials can have no bounds. The Quarterly Journal of Mechanics and Applied Mathematics, 58, 73–82. doi:10.1093/qjmamj/hbh021
  • Toson, B., Viot, P. and Pesqué, J. J. (2014) Finite element modeling of Balsa wood structures under severe loadings. Engineering Structures, 70, 36–52. doi:10.1016/j.engstruct.2014.03.017
  • USFS Timber Bridge Manual (1992) Properties of Wood and Structural Wood Products (Minnesota Department of Transportation), pp. 3-1–3-62. Available at: http://www.state.mn.us/bridge/pdf/insp/USFS-TimberBridgeManual/index.html
  • Vasudeva, G. (2008) Finite element analysis: A boon to dental research. The Internet Journal of Dental Science, 6, 1–6. Available at: http://ispub.com/IJDS/6/2/12792.
  • Zhu, D., Shi, H., Fzng, H., Liu, W., Qi, Y. and Bai, Y. (2018) Fiber reinforced composites sandwich panels with web reinforced wood core for building floor applications. Composites Part B Engineering, 150, 196–211. doi:10.1016/j.compositesb.2018.05.048

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.