137
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Investigation on mechanical and thermal properties related to hygroscopicity of two African hardwoods

, , &
Pages 846-857 | Received 08 Apr 2021, Accepted 09 Aug 2021, Published online: 27 Aug 2021

References

  • Aggrey-Smith Samuel, Kwasi Preko, Francis Wilson Owusu. (2016). Study of Thermal Properties of Some Selected Tropical Hard Wood Species. International Journal of Materials Science and Applications, 5(3), 143–150. doi:10.11648/j.ijmsa.20160503.15
  • Almeida, G. and Hernandez, R. E. (2006) Changes in physical properties of tropical and temperate hardwoods below and above the fiber saturation point. Wood Science and Technology, 40, 599–613.
  • Associação brasileira de normas técnicas – ABNT (1997) NBR 7190: Projetos de estruturas de madeiras (Rio de Janeiro).
  • Bal, H., Jannot, Y., Quenette, N., Chenu, A. and Gaye, S. (2012) Water content dependence of the porosity and thermal capacity of laterite based bricks with millet waste additive. Construction and Building Materials, 31, 144–150.
  • Benoit, Y. (2008) Le guide des essences bois: 74 essences, les choisir, les reconnaitre, les utiliser (2ième édition) (Paris: FCBA, Eyrolles).
  • Boudhrioua, N., Bahloul, N., Kouhila, M. and Kechaou, N. (2008) Sorptions isotherms and isosteric heats of sorpion of olive leaves (Chemlali variety): Experimental and mathematical investigations. Food and Bioproducts Processing, 86, 67–175.
  • CIRAD (Centre de Coopération Internationale de Recherche Agricole pour le Développement in French) (2011) Tropix 7.0 Synthèse des Caractéristiques Technologiques de 245 Essences Tropicales (Montpellier: CIRAD). doi:10.18167/74726F706978
  • Damfeu, J. C., Meukam, P., Jannot, Y. and Wati, E. (2017) Modeling and experimental determination of thermal properties of localwet buildings materials. Energy and Buildings, 135, 109–118.
  • De Hoog, F. R. (1982) A improved method for numerical inversion of Laplace transforms. Society for Industrial and Applied Mathematics, 3, 357–366.
  • Elimbi, A. (2005) Protocole d’analyses des matières premières et produits finis au laboratoire (Yaoundé: MIPROMALO).
  • Esteban, L. G., Casasus, A. G., de Palacios, P. and Fernández, F. G. (2004) Saturated salt method determination of hysteresis of Pinus sylvestris L. wood for 35 degrees C isotherms. Materials Construction, 54, 51–64.
  • Fernández, F. G., Esteban, L. G., De Palacios, P., Cristina, S., Iruela, A. G. and De la Fuente, J. (2014) Sorption and thermodynamic properties of Terminalia superb Engl. & Diels and Triplochiton scleroxylon K. Schum. Through the 15, 35 and 50°C sorption isotherms. European Journal of Wood Products, 72, 99–106.
  • Forest Products Laboratory, Wood handbook – Wood as an engineering material (1999) Gen Tech Rep FPL–GTR–113. U.S. Department of Agriculture, Forest Service (Madison WI: Forest Products Laboratory).
  • Gill, P. E. and Murray, W. (1978) Algorithms for the solution of the non-linear least-squares problems. Journal of Numerical Analysis, 15(5), 977–992.
  • Greenspan, L. (1977) Humidity fixed point of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards, Section A: Physics and Chemistry, 81, 89–96.
  • Guitard, D. (1987) Mécanique du matériau bois et composites. Collection nabla (Toulouse: C.E.P.A.D.U.E.S. Editions), 220 pages.
  • Hering, S., Keunecke, D. and Niemz, P. (2012) Moisture-dependent orthotropic elasticity of beech wood. Wood Science Technology, 46, 927–938. doi:10.1007/s00226-011-0449-4
  • Jalaludin, Z., Hill, C. and Kermani, A. (2009) Moisture Adsorption Isotherms of Wood Using Dynamic Vapor Sorption. CTE, SEBE (Edinburgh, UK: Napier University).
  • Jannot, Y., Kanmogne, A., Talla, A. and Monkam, L. (2006) Experimental determination and modelling of water desorption isotherms of tropical woods: Afzelia, ebony, iroko, moabi and obeche. Holz Roh-Werkst, 64, 121–124.
  • Labuza, T. P., Kaanane, A. and Chen, J. Y. (1985) Effect of temperature on the moisture sorption isotherms and water activity shift of two dehydrated foods. Journal of Food Science, 50, 385–392.
  • Machhour, H., Mahrouz, A. I., El Hadrami, M. and Kouhila, M. (2012) Sorption isotherms and thermodynamic properties of peppermint tea (Mentha piperita) after thermal and biochemical treatment. Journal of Materials and Environmental Science, 3, 232–247.
  • Melgaço Branco, N., Chahud, E. and Christoforo, A. L. (2014) Influence of moisture content in some mechanical properties of two Brazilian tropical wood species. Advances in Materials Research, 1025–1026, 42–45.
  • Mvondo, R. R. N., Damfeu, J. C., Meukam, P. and Jannot, Y. (2020) Influence of moisture content on the thermophysical properties of tropical wood species. Heat and Mass Transfer, 56, 1365–1378.
  • Mvondo, R. R. N., Meukam, P., Jeong, J., De Sousa Meneses, D. and Nkeng, E. G. (2017) Influence of water content on the mechanical and chemical properties of tropical wood species. Results in Physics, 7, 2096–2103.
  • Ouertani, S., Azzouz, S., Hassini, L. and Belghith, A. (2011) Palm wood drying and optimization of the processing parameters. Wood Material Science Engineering, 6, 75–90.
  • Ouertani, S., Azzouz, S., Hassini, L., Koubaa, A. and Belghith, A. (2014) Moisture sorption isotherms and thermodynamic properties of Jack pine and Palm wood: Comparative study. Industrial Crops and Products, 56, 200–210.
  • Ozyhar, T., Hering, S. and Niemz, P. (2012) Moisture-dependent elastic and strength anisotropy of European beech wood in tension. Journal of Materials Science, 47, 6141–6150. doi:10.1007/s10853-012-6534-8
  • Rodriguez-Jimenez, S., Duarte-Aranda, S. and Canche-Escamilla, G. (2019) Chemical composition and thermal properties of tropical wood from the Yucatán dry forests. BioRes, 14(2), 2651–2666.
  • Rohsenow, W., Hartnett, J. and Ganic, E. (1973) Handbook of Heat Transfer Fundamentals (New York: McGraw-Hill Book Company).
  • Silva, D. A. L., Rocco Lahr, F. A., Faria, O. B. and Chahud, E. (2012) Influence of wood moisture content on modulus of elasticity on compression parallel. Materials Research, 15(2), 300–304.
  • Simo Tagne, M., Zoulalian, A., Njomo, D. and Bonoma, B. (2011) Modelisation of desorption isotherms and estimation of the thermophysic and thermodynamic properties of tropical woods in Cameroon: The case of Ayous and Ebony woods. Revue des Energies Renouvelables, 14, 487–500.
  • Simo-Tagne, M., Zoulalian, A., Rogaume, Y., Rémond, R. and Bonoma, B. (2016) Modélisation des isothermes de sorption, caractérisation des propriétés thermodynamiques et détermination des humidités d’équilibre d’usage des bois tropicaux. Journal of Renewable Energies, 19(1), 79–96.
  • Themelin, A., Rebollo, J. and Thibaut, A. (1997) Method for defining the behaviour of lignocellulosic produces at sorption: Application to tropical wood species. In P. Hoffmeyer (ed.), International Conference on Wood-Water Relations, 16–17 June 1997 (Denmark: Copenhagen), pp. 17–32.
  • Torres, S., Wahbi, S., Puiggali, J. J. and Avramidis, R. S. (2011) Multiphysics modelling of vacuum drying of wood. Applied Mathematical Modelling, 35, 5006–5016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.