3,575
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Exploring the synergy between structural engineering design solutions and life cycle carbon footprint of cross-laminated timber in multi-storey buildings

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 30-42 | Received 24 Mar 2021, Accepted 27 Aug 2021, Published online: 16 Sep 2021

References

  • Aye, L., Ngo, T., Crawford, R., Gammampila, R. and Mendis, P. (2012) Life cycle greenhouse gas emissions and energy analysis of prefabricated reusable building modules. Energy and Buildings, 47, 159–168.
  • Balasbaneh, A. T. and Sher, W. (2021) Comparative sustainability evaluation of two engineered wood-based construction materials: Life cycle analysis of CLT versus GLT. Building and Environment, 204, 108112.
  • Berndes, G., Abt, B., Asikainen, A., Cowie, A., Dale, V., Egnell, G., Lindner, M., Marelli, L., Paré, D. and Pingoud, K. (2016) Forest biomass, carbon neutrality and climate change mitigation. From Science to Policy, 3, 3–27.
  • Björklund, T. and Tillman, A.-M. (1997) LCA of building frame structures: Environmental impact over the life cycle of wooden and concrete frames.
  • Blaß, H. J. and Uibel, T. (2007) Tragfähigkeit von stiftförmigen Verbindungsmitteln in Brettsperrholz.
  • Boverket (2018) Klimatdeklaration av byggnader [Climate declaration of buildings]. rapportnummer: 2018:23.
  • Boverket (2020) Utveckling av Regler om Klimatdeklaration av Byggnader [Development of Rules on Climate Declaration of Buildings]. Rapportnummer: 2020:13 (Karlskrona: Boverket).
  • Breton, C., Blanchet, P., Amor, B., Beauregard, R. and Chang, W.-S. (2018) Assessing the climate change impacts of biogenic carbon in buildings: A critical review of two main dynamic approaches. Sustainability, 10, 2020.
  • Cadorel, X. and Crawford, R. (2018) Life cycle analysis of cross laminated timber in buildings: A review. In P. Rajagopalan and M. M. Andamon (eds.), Engaging Architectural Science: Meeting the Challenges of Higher Density: 52nd International Conference of the Architectural Science Association (Melbourne: The Architectural Science Association and RMIT University), pp. 107–114.
  • Churkina, G., Organschi, A., Reyer, C. P., Ruff, A., Vinke, K., Liu, Z., Reck, B. K., Graedel, T. and Schellnhuber, H. J. (2020) Buildings as a global carbon sink. Nature Sustainability, 3, 269–276.
  • Cobut, A., Blanchet, P. and Beauregard, R. (2015) The environmental footprint of interior wood doors in non-residential buildings – part 1: Life cycle assessment. Journal of Cleaner Production, 109, 232–246.
  • Danielsson, H., Jeleč, M. and Serrano, E. (2017) Strength and stiffness of cross laminated timber at in-plane beam loading Report, Div. of Structural Mechanics, Faculty of Engineering LTH, Lund, Sweden.
  • Darby, H., Elmualim, A. A. and Kelly, F. A case study to investigate the life cycle carbon emissions and carbon storage capacity of a cross laminated timber, multi-storey residential building. Proceedings of the Sustainable Building Conference, Munich, Germany, 2013, pp. 10–12.
  • Dodoo, A. and Gustavsson, L. (2012) Lifecycle primary energy use and carbon footprint for conventional and passive house versions of an eight-story wood-framed apartment building. Passivhus Norden 2012, 21–23 oktober 2012, Trondheim, Norway.
  • Dodoo, A., Gustavsson, L. and Sathre, R. (2008) Energy implications of end-of-life options for building materials. First International Conference on Building Energy and Environment, Proceedings Vols 1–3, Dalian: Dalian University Technology Press.
  • Dodoo, A., Gustavsson, L. and Sathre, R. (2009) Carbon implications of end-of-life management of building materials, resources. Conservation and Recycling, 53, 276–286.
  • Dodoo, A., Gustavsson, L. and Sathre, R. (2014) Lifecycle carbon implications of conventional and low-energy multi-storey timber building systems. Energy and Buildings, 82, 194–210.
  • Dodoo, A. and Muszyński, L. 2021. End-of-life management of cross laminated timber multi-storey buildings: A case for designing for post-use material recovery and environmental benefits. World Conference on Timber Engineering (WCTE) 2021, August 9–12, Santiago, Chile.
  • Dorn, M., Abdeljaber, O. and Klaeson, J. (2019) Structural Health Monitoring of House Charlie. Technical report, Department of Building Technology, Linnaeus University, Sweden. In Swedish.
  • Dossche, C., Boel, V. and De Corte, W. (2017) Use of life cycle assessments in the construction sector: Critical review. Procedia Engineering, 171, 302–311.
  • Durlinger, B., Crossin, E. and Wong, J. (2013) Life Cycle Assessment of a Cross Laminated Timber Building Market Access (pp. 112) (Melbourne: Forest & Wood Products Australia).
  • Ecoinvent (2020) Ecoinvent database v3.7.1 Switzerland.
  • EN 15978 (2011) Sustainability of Construction Works – Assessment of Environmental Performance of Buildings – Calculation Method (Brussels: European Committee for Standardization).
  • EN 338 (2016) Structural Timber – Strength Classes (Brussels: European Committee for Standardization).
  • Eurocode 5: EN 1995-1-1:2004+AC:2006+A1 (2008) Design of Timber Structures – Part 1-1: General – Common Rules and Rules for Buildings (Brussels: CEN (European Committee for Standardization)).
  • European Commission (2016) Paris Agreement. Accessed 9 January 2017, available at: https://ec.europa.eu/clima/policies/international/negotiations/paris_en.
  • European Commission (2018) 2050 Long-Term Strategy. Accessed 13 April 2021, available at: https://ec.europa.eu/clima/policies/strategies/2050_en.
  • Finnhult, J. and Petersson, M. (2020) Effektivisering för montering av KL-element, En pilotstudie av infästningar mellan väggskiva och bjälklagsplatta [Efficient assembly of CLT element, a pilot study fasteners between wall and floor elements]. Bachelor Thesis. Department of Building Technology, Linnaeus University, Sweden. In Swedish.
  • Global Alliance for Buildings and Construction, IEA and UNEP (2019) 2019 Global Status Report for Buildings and Construction: Towards a Zero-Emission Efficient and Resilient Buildings and Construction Sector.
  • Government Offices of Sweden and Ministry of the Environment and Energy (2017) The Swedish Climate Policy Framework.
  • Guo, H., Liu, Y., Meng, Y., Huang, H., Sun, C. and Shao, Y. (2017) A comparison of the energy saving and carbon reduction performance between reinforced concrete and cross-laminated timber structures in residential buildings in the severe cold region of China. Sustainability, 9, 1426.
  • Gustafsson, A. (2019) The CLT Handbook: CLT Structures-Facts and Planning. Swedish Wood (Stockholm: RISE Research Institutes of Sweden Stockholm).
  • Gustavsson, L., Joelsson, A. and Sathre, R. (2010) Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building. Energy and Buildings, 42, 230–242.
  • Gustavsson, L., Pingoud, K. and Sathre, R. (2006) Carbon dioxide balance of wood substitution: Comparing concrete-and wood-framed buildings. Mitigation and Adaptation Strategies for Global Change, 11, 667–691.
  • Hemström, K., Gustavsson, L. and Mahapatra, K. (2017) The sociotechnical regime and Swedish contractor perceptions of structural frames. Construction Management and Economics, 35, 184–195.
  • Hildebrandt, J., Hagemann, N. and Thrän, D. (2017) The contribution of wood-based construction materials for leveraging a low carbon building sector in Europe. Sustainable Cities and Society, 34, 405–418.
  • Hill, C. A. S. (2019) The environmental consequences concerning the use of timber in the built environment. Frontiers in Built Environment, 5, 129.
  • IPCC (2007) Intergovernmental Panel on Climate Change (Geneva: IPCC Secretariat).
  • IPCC (2013) Climate Change 2013: The Physical Science Basis, the Summary for Policymakers of the Working Group I Contribution to the Fifth Assessment Report (New York: Cambridge University Press).
  • IPCC (2014) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
  • ISO/TS 14067 (2013) Greenhouse Gases – Carbon Footprint of Products – Requirements and Guidelines for Quantification and Communication (Geneva: International Organization for Standardization).
  • Jarnerö, K. (2008) Tekniska data för byggprojekt–Kv Limnologen i Växjö [Technical Data for Construction Project – Kv Limnologen in Växjö]. SP Rapport 2008:19, SP Trätek.
  • Jayalath, A., Navaratnam, S., Ngo, T., Mendis, P., Hewson, N. and Aye, L. (2020) Life cycle performance of cross laminated timber mid-rise residential buildings in Australia. Energy and Buildings, 223, 110091.
  • Lemaitre, R., Bocquet, J.-F., Schweigler, M. and Bader, T. K. (2018) Beam-on-foundation modelling as an alternative design method for timber joints with dowel-type fasteners: Part 1: Strength and stiffness per shear plane of single-fastener joints. 5th INTER Meeting, 13–16 August 2018, Tallin. Karlsruher Institut für Technologie.
  • Liang, S., Gu, H., Bergman, R. and Kelley, S. S. (2020) Comparative life-cycle assessment of a mass timber building and concrete alternative. Wood and Fiber Science, 52(2), 217–229.
  • Liljenström, C., Malmqvist, T., Erlandsson, M., Fredén, J., Adolfsson, I., Larsson, G. and Brogren, M. (2015) Byggandets klimatpåverkan: Livscykelberäkning av klimatpåverkan och energianvändning för ett nyproducerat energieffektivt flerbostadshus i betong. Sveriges Byggindustrier.
  • Linnaeus University (2020) Project: Improving the Competitive Advantage of CLT-Based Building Systems Through Engineering Design and Reduced Carbon Footprint. Accessed 11 March 2021, available at: https://lnu.se/en/research/searchresearch/research-projects/project-improving-the-competitive-advantage-of-clt-based-building-systems/.
  • Lippke, B., Oneil, E., Harrison, R., Skog, K., Gustavsson, L. and Sathre, R. (2011) Life cycle impacts of forest management and wood utilization on carbon mitigation: Knowns and unknowns. Carbon Management, 2, 303–333.
  • Lolli, N., Fufa, S. M. and Kjendseth Wiik, M. (2019) An assessment of greenhouse gas emissions from CLT and glulam in two residential nearly zero energy buildings. Wood Material Science & Engineering, 14, 342–354.
  • Mahapatra, K., Gustavsson, L. and Hemström, K. (2012) Multi-storey wood-frame buildings in Germany, Sweden and the UK. Construction Innovation, 12(1), 62–85.
  • Merrild, H. and Christensen, T. H. (2009) Recycling of wood for particle board production: accounting of greenhouse gases and global warming contributions. Waste Management & Research, 27, 781–788.
  • Muszynski, L., Hansen, E., Fernando, S., Schwarzmann, G. and Rainer, J. (2017) Insights into the global cross-laminated timber industry. BioProducts Business, 2(8), 77–92.
  • Passarelli, R. N. 2018. The environmental impact of reused CLT panels: Study of a single-storey commercial building in Japan. World Conference on Timber Engineering, Seoul, South Korea.
  • Peñaloza, D., Erlandsson, M., Berlin, J., Wålinder, M. and Falk, A. (2018) Future scenarios for climate mitigation of new construction in Sweden: Effects of different technological pathways. Journal of Cleaner Production, 187, 1025–1035.
  • Piccardo, C., Dodoo, A. and Gustavsson, L. (2020) Retrofitting a building to passive house level: A life cycle carbon balance. Energy and Buildings, 223, 110135.
  • Pierobon, F., Huang, M., Simonen, K. and Ganguly, I. (2019) Environmental benefits of using hybrid CLT structure in midrise non-residential construction: An LCA based comparative case study in the US pacific northwest. Journal of Building Engineering, 26, 100862.
  • Ringhofer, A., Brandner, R. and Blaß, H. J. (2018) Design approaches for dowel-type connections in CLT structures and their verification. In C. Sandhaas, J. Munch-Andersen, and P. Dietsch (eds.), Design of Connections in Timber Structures: A State-of-the-Art Report by COST Action F1402/WG3 (Aachen: Shaker-Verlag GmbH), pp. 161–191.
  • Robertson, A. B., Lam, F. C. and Cole, R. J. (2012) A comparative cradle-to-gate life cycle assessment of mid-rise office building construction alternatives: Laminated timber or reinforced concrete. Buildings, 2, 245–270.
  • Rosenberg, A. and Henriksson, M. (2019) Impact of connections on the system behaviour and reliability of timber-nonlinear finite element analyses of laterally loaded CLT wall. Master's thesis in Structural Engineering and Buidling Technology. Chalmers University of Technology, Sweden.
  • Sathre, R. and Gustavsson, L. (2006) Energy and carbon balances of wood cascade chains. Resources, Conservation and Recycling, 47, 332–355.
  • Sathre, R. and O’Connor, J. (2010) Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environmental Science & Policy, 13, 104–114.
  • Satola, D., Röck, M., Houlihan-Wiberg, A. and Gustavsen, A. (2021) Life cycle GHG emissions of residential buildings in humid subtropical and tropical climates: Systematic review and analysis. Buildings, 11, 6.
  • Schlamadinger, B. and Marland, G. (1996) The role of forest and bioenergy strategies in the global carbon cycle. Biomass and Bioenergy, 10, 275–300.
  • Schmidt, E. L., Riggio, M., Barbosa, A. R. and Mugabo, I. (2019) Environmental response of a CLT floor panel: Lessons for moisture management and monitoring of mass timber buildings. Building and Environment, 148, 609–622.
  • Serrano, E. (2009) Uppföljnings-och dokumentationsprojektet Limnologen: Översikt och delprojektrapporter i sammanfattning (in Swedish) [Follow-Up and Documentation Project Limnologen: Overview and Sub-Project Reports in Summary]. School of Technology and Design, Växjö University, Sweden. In Swedish.
  • Serrano, E., Enquist, B. and Vessby, J. (2014) Long term in-situ measurements of displacement, temperature and relative humidity in a multi storey residential CLT building. World Conference on Timber Engineering, Quebec City, 10–14 August 2014, pp. 398–405.
  • Södra (2020) Environmental product declaration in accordance with ISO 14025, ISO 21930 and EN 15804. EPD number: NEPD-2587-1314-EN.
  • Stephan, A., Crawford, R. H. and De Myttenaere, K. (2013) A comprehensive assessment of the life cycle energy demand of passive houses. Applied Energy, 112, 23–34.
  • Stora Enso (2020) Environmental Product Declaration in Accordance with ISO 14025 and EN 15804 for: CLT (Cross Laminated Timber). EPD Registration Number: S-P-02033.
  • Ström, F. (2020) Dimensionerande egenskaper för korslimmade träskivor och val av hållfasthetsklasser för lameller. Examensarbete i byggteknik, Linnéuniversitet, Fakulteten för teknik (in Swedish) [Structural Properties of Cross Laminated Timber Panels and Choice of Strength Classes for Lamellae]. Master's thesis. Department of Building Technology, Linnaeus University, Sweden. In Swedish.
  • Swedish Wood (2020) The Forest and Sustainable Forestry. Accessed 15 September 2020, available at: https://www.swedishwood.com/wood-facts/about-wood/wood-and-the-environment/the-forest-and-sustainable-forestry/.
  • Takano, A., Hafner, A., Linkosalmi, L., Ott, S., Hughes, M. and Winter, S. (2015) Life cycle assessment of wood construction according to the normative standards. European Journal of Wood and Wood Products, 73, 299–312.
  • Tettey, U. Y. A., Dodoo, A. and Gustavsson, L. (2019) Carbon balances for a low energy apartment building with different structural frame materials. Energy Procedia, 158, 4254–4261.
  • United Nations Publications (2019) Forest Products Annual Market Review 2017–2018 (UN).
  • Ürge-Vorsatz, D., Khosla, R., Bernhardt, R., Chan, Y. C., Vérez, D., Hu, S. and Cabeza, L. F. (2020) Advances toward a net-zero global building sector. Annual Review of Environment and Resources, 45, 227–269.
  • Werner, F., Taverna, R., Hofer, P., Thürig, E. and Kaufmann, E. (2010) National and global greenhouse gas dynamics of different forest management and wood use scenarios: A model-based assessment. Environmental Science & Policy, 13, 72–85.
  • Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E. and Weidema, B. (2016) The ecoinvent database version 3 (part I): Overview and methodology. The International Journal of Life Cycle Assessment, 21, 1218–1230.
  • Xu, Z., Smyth, C. E., Lemprière, T. C., Rampley, G. J. and Kurz, W. A. (2018) Climate change mitigation strategies in the forest sector: Biophysical impacts and economic implications in British Columbia, Canada. Mitigation and Adaptation Strategies for Global Change, 23, 257–290.