184
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Sorption isotherms and moisture transfer properties of seven Central Africa hardwood species

, ORCID Icon &
Pages 507-516 | Received 28 Jan 2022, Accepted 07 Mar 2022, Published online: 17 Mar 2022

References

  • Agoua, E. and Perré, P. (2010) Mass transfer in wood: Identification of structural parameters from diffusivity and permeability measurements. Journal of Porous Media, 13(11), 1017–1024.
  • Agoua, E. (2001) Diffusivité et perméabilité du bois: Validation de méthodologies expérimentales et prise en compte de paramètres morphologiques simples pour la modélisation physique. Thesis (PhD). Ecole Nationale du Génie Rural, des Eaux et des Forêts (ENGREF).
  • Alkadri, A., Jullien, D., Arnould, O., Rosenkrantz, E., Langbour, P., Hovasse, L. and Gril, J. (2020) Hygromechanical properties of grenadilla wood (Dalbergia melanoxylon). Wood Science and Technology, 54(5), 1269–1297.
  • Almeida, G., Rémond, R. and Patrick, P. (2018) Hygroscopic behaviour of lignocellulosic materials: Dataset at oscillating relative humidity variations. Journal of Building Engineering, 19, 320–333.
  • Brunauer, S., Emmett, P. H. and Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.
  • Claesson, J., Hagentoft, C. E. and Wadso, L. (1994) Masked edge effects when measuring diffusion coefficients with the cup method. Polymer Engineering and Science, 34(10), 821–826.
  • De La Cruz-Lefevre, M., Rémond, R., Aléon, D. and Perré, P. (2010) Effect of oscillating drying conditions on variations in the moisture content field inside wood boards. Wood Material Science and Engineering, 5(2), 84–90.
  • Dullien, F. A. L. (ed). (1992) Porous Media: Fluid Transport and Pore Structure (New York: Academic Press Inc).
  • El-Dabaa, R., Abdelmohsen, S. and Mansour, Y. (2020) Programmable passive actuation for adaptive building façade design using hygroscopic properties of wood. Wood Material Science & Engineering, 16(4), 246–259.
  • Gaitán-Alvarez, J., Berrocal, A., Lykidis, C., Moya, R. and Mantanis, G. I. (2021) Furfurylation of tropical wood species with and without silver nanoparticles: Part II: Evaluation of wood properties. Wood Material Science & Engineering, 1–8. doi:10.1080/17480272.2021.1992795
  • Hailwood, A. J. and Horrobin, S. (1946) Absorption of water by polymers: Analysis in terms of a simple model. Transactions of the Faraday Society, 42, B. 84-–B. 102.
  • IAWA committee (1989) IAWA list of microscopic features for hardwood identification. IAWA Bulletin n. s, 10(3), 219–332. (4th printing 2007), Published for the International Association of Wood Anatomists at the National Herbarium of the Netherlands, Leiden
  • Iglesias, H. A. and Chirife, J. (1995) An alternative to the Guggenheim, Anderson and De Boer model for the mathematical description of moisture sorption isotherms of foods. Food Research International, 28(3), 317–321.
  • Meier, E. W. (2015) Identifying and using hundreds of woods worldwide. Wood Database.
  • Merakeb, S., Dubois, F. and Petit, C. (2009) Modélisation des hystérésis de sorption dans les matériaux hygroscopiques. C. R. Mecanique, 337, 34–39.
  • Ott, S., Tietze, A. and Winter, S. (2015) Wind driven rain and moisture safety of tall timber houses – evaluation of simulation methods. Wood Material Science & Engineering, 10(3), 300–311.
  • Ouertani, S., Azzouz, S., Hassini, L., Koubaa, A. and Belghith, A. (2014) Moisture sorption isotherms and thermodynamic properties of jack pine and palm wood: Comparative study. Industrial Crops and Products, 56, 200–210.
  • Paradis, S., Guibal, D., Gérard, J., Beauchêne, J., Brancheriau, L., Cabantous, B., … Vernay, M. (2015) TROPIX 7.5. 1: caractéristiques technologiques de 245 essences tropicales et tempérées.
  • Perré, P. and Karimi, A. (2002) Fluid migration in two species of beech (F. sylvatica and F. orientalis): A percolation model able to account for macroscopic measurements and anatomical observation. Maderas Ciena y Tecnologia, 4(1), 50–68.
  • Perré, P. and Turner, I. (2001) Determination of the material property variations across the growth ring of softwood for use in a heterogeneous drying model. Part 2. Use of homogenisation to predict bound liquid diffusivity and thermal conductivity. Holzforschung, 5, 417–425.
  • Perré, P. and Agoua, E. (2002) Mass transfer in MDF (medium density fiberboard): Identification of structural parameters from permeability and diffusivity measurements. In 13th International Drying Symposium, Drying, pp. 178–187.
  • Perré, P. (2003) The role of wood anatomy in the drying of wood: Great oaks from little acorns grow. In Proceedings of the 8th International IUFRO Wood Drying Conference, Brasov, Romania, pp. 11–24.
  • Perré, P. (2007) Chapter 7. Fluid migration in wood. In P. Perré (ed.), Fundamentals of Wood Drying (Nancy: A.R.BO.LOR, Nancy), pp. 125–156.
  • Redman, A. L., Bailleres, H., Turner, I. and Perré, P. (2012) Mass transfer properties (permeability and mass diffusivity) of four Australian hardwood species. BioResources, 7(3), 3410–3424.
  • Rémond, R. and Almeida, G. (2011) Mass diffusivity of low-density fibreboard determined under steady-and unsteady-state conditions: Evidence of dual-scale mechanisms in the diffusion. Wood Material Science and Engineering, 6(1–2), 23–33.
  • Rémond, R., Almeida, G. and Perré, P. (2018) The gripped-box model: A simple and robust formulation of sorption hysteresis for lignocellulosic materials. Constructiona and Building Materials, 170, 716–724.
  • Salin, J. G. (2010) Problems and solutions in wood drying modelling: History and future. Wood Material Science and Engineering, 5(2), 123–134.
  • Siau, J. F. (1984) Transport Processes in Wood (Berlin Heidelberg: Springer-Verlag).
  • Simo-Tagne, M., Bennamoun, L., Léonard, A. and Rogaume, Y. (2019) Determination and modeling of the isotherms of adsorption/desorption and thermodynamic properties of obeche and lotofa using Nelson’s sorption model. Heat and Mass Transfer. doi:10.1007/s00231-019-02577-2
  • Simo-Tagne, M., Rémond, R., Rogaume, Y., Zoulalian, A. and Bonoma, B. (2016a) Sorption behavior of four tropical woods using a dynamic vapor sorption standard analysis system. Maderas Ciena y Tecnologia, 18(3), 403–412.
  • Simo-Tagne, M., Rémond, R., Rogaume, Y., Zoulalian, A. and Perré, P. (2016b) Characterization sorption behavior and mass transfer properties of four Central Africa tropical woods ayous, sapele, frake, lotofa. Maderas Ciena y Tecnologia, 18(1), 207–226.
  • Skaar, C. (1988) Wood-water Relations (Berlin: Springer Verlag). etc. pp. 283.
  • Tarmian, A. and Perré, P. (2009) Air permeability in longitudinal and radial directions of compression wood of Picea abies L. and tension wood of Fagus sylvatica L. Holzforschung, 63, 352–356.
  • Tarmian, A., Rémond, R., Dashti, H. and Perré, P. (2012) Moisture diffusion coefficient of reaction woods: Compression wood of Piceaabies L. and tension wood of Fagus sylvatica L. Wood Sciences Technology, 46, 405–417.
  • Wei, A. (2016) Glissement moléculaire dans les matériaux lignocellulosiques: mesures de perméabilité apparente et identification de paramètres morphologiques. Thesis (PhD), Université Paris-Saclay.
  • Wei, A., Duval, H., Pierre, F. and Perre, P. (2017) A novel device to measure gaseous permeability over a wide range of pressures: Characterization of slip flow for Norway spruce, European beech, and wood-based materials. Holzforschung, 71(2), 147–162.
  • Zelinka, S. L., Glass, S. V. and Thybring, E. E. (2018) Myth versus reality: Do parabolic sorption isotherm models reflect actual wood–water thermodynamics? Wood Science and Technology, 52(6), 1701–1706.
  • Zohoun, S., Agoua, E., Degan, G. and Perré, P. (2003) An experimental correction proposed for an accurate determination of mass diffusivity of wood in steady regime. Heat and Mass Transfer, 39, 147–155.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.