1,912
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Determination of the machining characteristics of Uludağ fir (Abies nordmanniana Mattf.) densified by compressing

ORCID Icon, ORCID Icon & ORCID Icon
Pages 841-851 | Received 15 Sep 2021, Accepted 18 May 2022, Published online: 30 May 2022

References

  • Ábrahám, J. and Németh, R. (2012) Physical and mechanical properties of thermo-mechanically densified poplar. In Proceedings of the International Scientific Conference on Sustainable Development and Ecological Foorprint, 26–27 March 2012, Sopron, Hungary.
  • Ábrahám, J., Németh, R. and Molnár, S. (2010) Thermo-mechanical densification of Pannónia Poplar. In Proceedings of the Quality Control for Wood and Wood Products, COST Action E53, 4–7 May 2010, Edinburgh, UK.
  • Aghakhani, M., Khazaeian, A. and Madhoushi, M. (2013) Different CNC machining condition of Paulownia wood by CNC influence on the Abbott roughness parameters. Iranian Journal of Wood and Paper Science Research, 28(2), 291–312.
  • Akrami, A. and Laleicke, P. F. (2018) Densification, screw holding strength, and Brinell hardness of European beech and poplar oriented strand boards. Wood Material Science and Engineering, 13(4), 236–240. doi:10.1080/17480272.2017.1358764
  • Amorim, M. R. S., Ribeiro, P. G., Martins, S. A., Del Menezzi, C. H. S. and De Souza, M. R. (2013) Surface wettability and roughness of 11 Amazonian tropical hardwoods. Floresta e Ambiente, 20, 99–109. doi:10.4322/floram.2012.069
  • Arruda, L. M. and Del Menezzi, C. H. S. (2013) Effect of thermomechanical treatment on physical properties of wood veneers. International Journal of Advanced Manufacturing Technology, 4(4), 217–224. doi:10.1179/2042645312Y.0000000022
  • Aslan, S., Coskun, H. and Kilic, M. (2008) The effect of the cutting direction, number of blades and grain size of the abrasives on surface roughness of Taurus cedar (Cedrus Libani A. Rich.) woods. Building and Environment, 43, 696–701. doi:10.1016/j.buildenv.2007.01.048
  • Aykac, E. and Sofuoglu, S. D. (2021) Investigation of the effect of machining parameters on surface quality in Bamboo. Tehnički Vjesnik, 28(2), 684–688. doi:10.17559/TV-20200102202928
  • Bal, B. C. (2018) The effects of some tool paths adjustments of CNC machines on surface roughness and processing time of fiberboards. Furmaj, 1(1), 21–30. doi:10.33725/mamad.427588
  • Bal, B. C. and Akçakaya, E. (2018) The effects of step over, feed rate and finish depth on the surface roughness of fiberboard processed with CNC machine. Furmaj, 1(2), 86–93. doi:10.33725/mamad.481278
  • Bekhta, P. and Krystofiak, T. (2016) The influence of short-term thermo-mechanical densification on the surface wettability of wood veneers. Maderas-Cienc Tecnol, 18(1), 79–90. doi:10.4067/S0718-221X2016005000008
  • Bekhta, P., Proszyk, S., Krystofiak, T., Mamonova, M., Pinkowski, G. and Lis, B. (2014) Effect of thermomechanical densification on surface roughness of wood veneers. Wood Material Science and Engineering, 9(4), 233–245. doi:10.1080/17480272.2014.923042
  • Bekhta, P., Proszyk, S., Krystofiak, T., Sedliacik, J., Nocak, I. and Mamonova, M. (2017) Effects of short-term thermomechanical densification on the structure and properties of wood veneers. Wood Material Science and Engineering, 12(1), 40–54. doi:10.1080/17480272.2015.1009488
  • Blomberg, J. and Persson, B. (2004) Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process. Journal of Wood Science, 50(4), 307–314. doi:10.1007/s10086-003-0566-2
  • Blomberg, J., Persson, B. and Blomberg, A. (2005) Effects of semi-isostatic densification of wood on the variation in strength properties with density. Wood Science and Technology, 39(5), 339–350. doi:10.1007/s00226-005-0290-8
  • Budakci, M., Pelit, H., Sonmez, A. and Korkmaz, M. (2016) The effects of densification and heat post-treatment on hardness and morphological properties of wood materials. BioResources, 11(3), 7822–7838. doi:10.15376/biores.11.3.7822-7838
  • Cruz, N., Bustos, C., Aguayo, M. G., Cloutier, A. and Castillo, R. (2018) Impact of the chemical composition of pinus radiata wood on its physical and mechanical properties following thermo-hygromechanical densification. BioResources, 13(2), 2268–2282. doi:10.15376/biores.13.2.2268-2282
  • Csanády, E. and Magoss, E. (2013) Mechanics of the cutting process. In Mechanics of Wood Machining (Cham.: Springer), pp. 1–30. doi:10.1007/978-3-642-29955-1_1
  • Davim, J. P., Clemente, V. C. and Silva, S. (2009) Surface roughness aspects in milling MDF (Medium Density Fibreboard). International Journal of Advanced Manufacturing Technology, 40(1–2), 49–55. doi:10.1007/s00170-007-1318-z
  • Davis, E. M. (1959) Three “Musts” For Good Machining, The Wood Worker Edition, (USA: USDA Forest Products Laboratory), Madison, Wisconsin.
  • Davis, E. M. (1961) The effect of density upon wood properties (USA: Hitchcock Publishing), 2, pp.1–3.
  • Fang, C. H., Mariotti, N., Cloutier, A., Koubaa, A. and Blanchet, P. (2012) Densification of wood veneers by compression combined with heat and steam. European Journal of Wood and Wood Products, 70(1–3), 155–163. doi:10.1007/s00107-011-0524-4
  • Fleischhauer, R., Hartig, J. U., Haller, P. and Kaliske, M. (2019) Moisture-dependent thermo-mechanical constitutive modeling of wood. Eng Comput (Swansea), 36(1), 2–24. doi:10.1108/EC-09-2017-0368
  • Fu, Q., Cloutier, A. and Laghdir, A. (2017) Effects of heat and steam on the mechanical properties and dimensional stability of thermo-hygromechanically-densified sugar maple wood. BioResources, 12(4), 9212–9226. doi:10.15376/biores.12.4.9212-9226
  • Gao, Z., Huang, R., Chang, J., Li, R. and Wu, Y. (2019) Effects of pressurized superheated-steam heat treatment on set recovery and mechanical properties of surface-compressed wood. BioResources, 14(1), 1718–1730.
  • Gong, M., Lamason, C. and Li, L. (2010) Interactive effect of surface densification and post-heat-treatment on aspen wood. Journal of Materials Processing Technology, 210(2), 293–296. doi:10.1016/j.jmatprotec.2009.09.013
  • Hajihassani, R., Mohebby, B., Najafi, S. K. and Navi, P. (2018) Influence of combined hygro-thermomechanical treatment on technical characteristics of poplar wood. Maderas-Cienc Tecnol, 20(1), 117–128. doi:10.4067/S0718-221X2018005011001
  • Hazir, E., Erdinler, E. S. and Koc, K. H. (2018) Optimization of CNC cutting parameters using design of experiment (DOE) and desirability function. Journal of Forestry Research, 29(5), 1423–1434. doi:10.1007/s11676-017-0555-8
  • Hecker, M. and Becker, G. (1995) Surface roughness of Douglas fir veneer as a result of silviculture management. IUFRO 20. World Congress, 6–12 August, Tampere, Finland: 6–12.
  • Hiziroglu, S., Anwar, U. M. K., Hamdan, H. and Paridah, M. T. (2008) Evaluation of surface quality of some Malaysian species as function of outdoor exposure. Journal of Materials Processing Technology, 199, 156–162.
  • Homan, W., Tjeerdsma, B., Beckers, E. and Jorissen, A. (2000) Structural and other properties of modified wood. Proceedings of the World Conference on Timber Engineering, Whisthler Resort, B. C., Canada.
  • Iskra, P. and Tanaka, C. (2005) The influence of wood fiber direction, feed rate, and cutting width on sound intensity during routing. Holz als Roh-und Werkstoff, 63(3), 167–172. doi:10.1007/s00107-004-0541-7
  • Isleyen, U. K. and Karamanoglu, M. (2019) The influence of machining parameters on surface roughness of MDF in milling operation. BioResources, 14(2), 3266–3277.
  • ISO 13565-2 (1999) Geometrical Product Specifications (GPS) - Surface Texture: Profile Method; Surfaces Having Stratified Functional properties - Part 2: Height Characterization Using the Linear Material Ratio Curve (Geneva, Switzerland: International Organization for Standardization).
  • ISO 3130 (1975) Wood Determination of Moisture Content for Physical and Mechanical Tests (Geneva, Switzerland: International Organization for Standardization).
  • ISO 13061 (2014) Wood-determination of Density for Physical and Mechanical Tests (Geneva, Switzerland: International Organization for Standardization).
  • ISO 3274 (2017) Geometrical Product Specifications (GPS) – Surface Texture: Profile Method – Nominal Characteristics of Contact (Stylus) Instruments (Geneva, Switzerland: International Organization for Standardization).
  • ISO 4287 (2015) Geometrical Product Specifications (GPS)-Surface Texture: Profile Method- Terms, Definitions and Surface Texture Parameters (Geneva, Switzerland: International Organization for Standardization).
  • ISO 468 (1982) Surface Roughness- Parameters, Their Values and General Rules for Specifying Requirements, ISO (Geneva, Switzerland: International Organization for Standardization, Geneva, Switzerland).
  • Kamke, F. A. (2006) Densified radiata pine for structural composites. Maderas-Cienc Tecnol, 8(2), 83–92. doi:10.4067/S0718-221X2006000200002
  • Karagoz, U. (2010) Investigation of machining parameters on the surface quality in CNC routing wood and wood-based materials. Master’s thesis. Suleyman Demirel University, Graduate School of Natural and Applied Sciences, Isparta, Turkey.
  • Kariz, M., Kuzman, M. K., Sernek, M., Hughes, M., Rautkari, L., Kamke, F. A. and Kutnar, A. (2017) Influence of temperature of thermal treatment on surface densification of spruce. European Journal of Wood and Wood Products, 75(1), 113–123. doi:10.1007/s00107-016-1052-z
  • Kaya, M., Imirzi, H. O. and Sogutlu, C. (2017) Effect of cutter types, spindle speed and feed rate on the surface quality in CNC milling, The XXVIIIth International Conference: Research for Furniture Industry, 21-22 September 2017, Poznań, Poland.
  • Kilic, M., Hiziroglu, S. and Burdurlu, E. (2006) Effect of machining on surface roughness of wood. Building and Environment, 41(8), 1074–1078. doi:10.1016/j.buildenv.2005.05.008
  • Koc, K. H., Erdinler, E. S., Hazir, E. and Oztürk, E. (2017) Effect of CNC application parameters on wooden surface quality. Measurement, 107, 12–18. doi:10.1016/j.measurement.2017.05.001
  • Korkut, S. (2008) The effects of heat treatment on some technological properties in Uludag fir (Abies bornmuellerinana Mattf.) wood. Building and Environment, 43(4), 422–428. doi:10.1016/j.buildenv.2007.01.004
  • Korkut, S. and Kocaefe, D. (2009) Effect of heat treatment on wood properties. Düzce University Journal of Forestry, 5(2), 11–34. Available at: https://dergipark.org.tr/tr/pub/duzceod/issue/4827/291144.
  • Kutnar, A. and Šernek, M. (2007) Densification of wood. Gozdarstva in Lesarstva, 82, 53–62. Available at: http://eprints.gozdis.si/198/1/zbgl-82-6.pdf.
  • Laine, K., Antikainen, T., Rautkari, L. and Hughes, M. (2013) Analysing density profile characteristics of surface densified solid wood using computational approach. International Wood Products Journal, 4(3), 144–149. doi:10.1179/2042645313Y.0000000031
  • Laskowska, A. (2017) The influence of process parameters on the density profile and hardness of surface-densified birch wood (Betula pendula Roth). BioResources, 12(3), 6011–6023. doi:10.15376/biores.12.3.6011-6023
  • Laskowska, A. (2020) The influence of ultraviolet radiation on the colour of thermo-mechanically modified beech and oak wood. Maderas-Cienc Tecnol, 22(1), 55–68. doi:10.4067/S0718-221X2020005000106
  • Lavery, D. J., Mclarnontul, D., Taylor, J. M., Moloney, S. and Atanackovic, A. (1995) Parameters affecting the surface finish of planed sitka spruce. Forest Products Journal, 45, 45–50.
  • Lykidis, C., Kotrotsiou, K. and Tsichlakis, A. (2020) Reducing set-recovery of compressively densified poplar wood by impregnation–modification with melamine–formaldehyde resin. Wood Material Science and Engineering, 15(5), 269–277. doi:10.1080/17480272.2019.1594365
  • Magoss, E. (2008) General regularities of wood surface roughness. Acta Silvatica and Lignaria Hungarica, 4, 81–93.
  • Malkocoglu, A. (2007) Machining properties and surface roughness of various wood species planed in different conditions. Building and Environment, 42(7), 2562–2567. doi:10.1016/j.buildenv.2006.08.028
  • Malkocoglu, A. and Ozdemir, T. (2006) The machining properties of some hardwoods and softwoods naturally grown in Eastern Black Sea region of Turkey. Journal of Materials Processing Technology, 173(3), 315–320. doi:10.1016/j.jmatprotec.2005.09.031
  • Mania, P., Wróblewski, M., Wójciak, A., Roszyk, E. and Moliński, W. (2020) Hardness of densified wood in relation to changed chemical composition. Forests, 11(5), doi:10.3390/F11050506
  • Mitchell, P. H. and Lemaster, R. L. (2002) Investigation of machine parameters on the surface quality in routing soft maple. Forest Products Journal, 52(6), 85–91.
  • Navi, P. and Pizzi, A. (2015) Thermo-hydro-mechanical wood behaviour and processing selected papers. Holzforschung, 69(7), 863–873. doi:10.1515/hf-2014-0198
  • Ozel, H. B. and Ertekin, M. (2012) The change of stand structure in Uludag fir (Abies nordmanniana subsp. bornmuelleriana Mattf.) forests along an altitudinal gradient. Kastamonu University Journal of Forestry Faculty, 12(3), 96–104.
  • Patel, M. D. H. and Patni, V. N. (2014) An investigation effect of machining parameters on CNC router. International Journal of Engineering Development and Research, 2(2), 1583–1587.
  • Pelit, H. (2014) The effects of densification and heat treatment on finishing process with some technological properties of Eastern beech and scots pine. Ph.D. Thesis. Gazi University, Graduate School of Natural and Applied Sciences, Ankara, Turkey.
  • Pelit, H., Budakci, M. and Sonmez, A. (2018) Density and some mechanical properties of densified and heat post-treated Uludag fir, linden and black poplar woods. European Journal of Wood and Wood Products, 76(1), 79–87. doi:10.1007/s00107-017-1182-y
  • Pelit, H., Budakci, M., Sonmez, A. and Burdurlu, E. (2015a) Surface roughness and brightness of Scots pine (Pinus sylvestris) applied with water-based varnish after densification and heat treatment. Journal of Wood Science, 61(6), 586–594. doi:10.1007/s10086-015-1506-7
  • Pelit, H., Korkmaz, M. and Budakci, M. (2021) Surface roughness of thermally treated wood cut with different parameters in CNC router machine. BioResources, 16(3), 5133–5147. doi:10.15376/biores.16.3.5133-5147
  • Pelit, H. and Sonmez, A. (2015) The effect of thermo-mechanical densification and heat treatment on some physical properties of Eastern beech (Fagus orientalis L.) wood. Duzce University Journal of Science and Technology, 3(1), 1–14. Available at: https://dergipark.org.tr/en/pub/dubited/issue/4809/66235.
  • Pelit, H., Sonmez, A. and Budakci, M. (2014) Effects of ThermoWood® process combined with thermo-mechanical densification on some physical properties of Scots pine (Pinus sylvestris L.). BioResources, 9(3), 4552–4567. doi:10.15376/biores.9.3.4552-4567
  • Pelit, H., Sonmez, A. and Budakci, M. (2015b) Effects of thermomechanical densification and heat treatment on density and Brinell hardness of Scots pine (Pinus sylvestris L.) and Eastern beech (Fagus orientalis L.). BioResources, 10(2), 3097–3111. doi:10.15376/biores.10.2.3097-3111
  • Pertuzzatti, A., Missio, A. L., Cademartori, P. H. G., Santini, E. J., Haselein, C. R., Berger, C., Gatto, A. D. and Tondi, G. (2018) Effect of process parameters in the thermomechanical densification of Pinus elliottii and Eucalyptus grandis fast-growing wood. BioResources, 13(1), 1576–1590. doi:10.15376/biores.13.1.1576-1590
  • Pinkowski, G., Szymański, W., Krauss, A. and Stefanowski, S. (2018) Effect of sharpness angle and feeding speed on the surface roughness during milling of various wood species. BioResources, 13(3), 6952–6962.
  • Rautkari, L. (2012) Surface modification of solid wood using different techniques. PhD Thesis. Aalto University, Department of Forest Products Technology, Finland. available at: https://aaltodoc.aalto.fi/handle/123456789/5259.
  • Rautkari, L., Laine, K., Kutnar, A., Medved, S. and Hughes, M. (2013) Hardness and density profile of surface densified and thermally modified Scots pine in relation to degree of densification. Journal of Materials Science, 48(6), 2370–2375. doi:10.1007/s10853-012-7019-5
  • Rautkari, L., Properzi, M., Pichelin, F. and Hughes, M. (2009) Surface modification of wood using friction. Wood Science and Technology, 43(3–4), 291–299. doi:10.1007/s00226-008-0227-0
  • Rautkari, L., Properzi, M., Pichelin, F. and Hughes, M. (2010) Properties and set-recovery of surface densified Norway spruce and European beech. Wood Science and Technology, 44(4), 679–691. doi:10.1007/s00226-009-0291-0
  • Rawangwong, S., Chatthong, J. and Rodjananugoon, J. (2011) The study of proper conditions in face coconut wood by CNC milling machine, 2011 IEEE International Conference on Quality and Reliability, 14-17 Sept. 2011, Bangkok, Thailand: IEEE, 455–459. doi:10.1109/ICQR.2011.6031760
  • Salca, E. A. (2010) Total roughness of profiled surfaces made of Black alder wood. Proceedings of the Biennial International Symposium, Forest and Sustainable Development, 15-16th October 2010, Brașov, Romania, Transilvania University Press 2011, 659–664.
  • Sandberg, D., Haller, P. and Navi, P. (2013) Thermo-hydro and thermohydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Material Science and Engineering, 8(1), 64–88. doi:10.1080/17480272.2012.751935
  • Sandberg, D., Kutnar, A., Karlsson, O. and Jones, D. (2021) Wood Modification Technologies: Principles, Sustainability, and the Need for Innovation (1st ed.). (Boca Raton: CRC Press). doi:10.1201/9781351028226
  • Schwarzkopf, M. (2021) Densified wood impregnated with phenol resin for reduced set-recovery. Wood Material Science and Engineering, 16(1), 35–41. doi:10.1080/17480272.2020.1729236
  • Senol, S. (2018) Determination of physical, mechanical and technological properties of some wood materials treated with thermo-vibro-mechanical (TVM) process. PhD. Thesis. Duzce University, Graduate School of Natural and Applied Sciences, Duzce, Turkey.
  • Senol, S. and Budakci, M. (2016) Mechanical wood modification methods. Mugla Journal of Science and Technology, 2(2), 53–53. doi:10.22531/muglajsci.283619
  • Senol, S. and Budakci, M. (2019) Effect of Thermo-Vibro-Mechanic® densification process on the gloss and hardness values of some wood materials. BioResources, 14(4), 9611–9627.
  • Senol, S., Budakci, M. and Korkmaz, M. (2017) The effect of Thermo-Vibro-Mechanical (TVM) densification process on density and abrasion resistance of some wood materials. Journal of Advanced Technology Sciences, 6(3), 263–275. available at: https://dergipark.org.tr/tr/download/article-file/378796.
  • Sieminski, R. and Skarzynska, A. (1987) Surface roughness of different species of wood after sanding. Przemysl Drzewny, 38(9), 23–25.
  • Skyba, O., Schwarze, F. W. M. R. and Niemz, P. (2009) Physical and mechanical properties of Thermo-hygromechanically (THM) - Densified wood. Wood Research, 54(2), 1–18.
  • Sofuoglu, S. D. (2008) Effects of wood machining properties of some native species on surface quality. Ph.D. Thesis. Istanbul University, Graduate School of Natural and Applied Sciences, Istanbul. Turkey.
  • Sofuoglu, S. D. (2015) Using artificial neural networks to model the surface roughness of massive wooden edge-glued panels made of scotch pine (Pinus sylvestris L.) in a machining process with computer numerical control. BioResources, 10(4), 6797–6808. doi:10.15376/biores.10.4.6797-6808
  • Sofuoglu, S. D. and Kurtoglu, A. (2014) Some machining properties of 4 wood species grown in Turkey. Turkish Journal of Agriculture and Forestry, 38(3), 420–427. doi:10.3906/tar-1304-124
  • Sutcu, A. and Karagoz, U. (2012) Effect of machining parameters on surface quality after face milling of MDF. Wood Research, 57(2), 231–240. available at: http://www.woodresearch.sk/wr/201202/05.pdf.
  • Sutcu, A. and Karagoz, U. (2013) The influence of process parameters on the surface roughness in aesthetic machining of wooden edge-glued panels (EGPs). BioResources, 8(4), 5435–5448. doi:10.15376/biores.8.4.5435-5448
  • Tenorio, C., Moya, R. and Navarro-Mora, A. (2021) Flooring characteristics of thermo-mechanical densified wood from three hardwood tropical species in Costa Rica. Maderas-Cienc Tecnol, 23, 1–12. doi:10.4067/s0718-221x2021000100416
  • Thoma, H., Leonidha, P. and Entela, L. (2015) Evaluation of wood surface roughness depending on species characteristics. Maderas Ciencia y Tecnología, 17(2), 285–292. doi:10.4067/S0718-221X2015005000027
  • Tiryaki, S. (2014) Effecting factors on surface roughness in wood machining. Turkish Journal of Forestry, 15(2), 176–182.
  • Tosun, M. and Sofuoglu, S. D. (2021) Studies of densification of wood material by compression. Furniture and Wooden Material Research Journal (MAMAD), 4(1), 91–102. doi:10.33725/mamad.911947
  • Ulker, O., Imirzi, O. and Burdurlu, E. (2012) The effect of densification temperature on some physical and mechanical properties of Scots pine (Pinus sylvestris L.). BioResources, 7(4), 5581–5592. doi:10.15376/biores.7.4.5581-5592
  • Vitosytė, J., Ukvalbergienė, K. and Keturakis, G. (2015) Wood surface roughness: An impact of wood species, grain direction and grit size. Materials Science, 21(2), 255–259.
  • Wehsener, J., Haller, P., Hartig, J. and Werner, T. E. (2013) Continuous wood densification process of circular profiles, In: Popescu, C.-M. and Popescu, M.-C. [eds.]. COST Action FP0904 3rd Action Annual Conference, Book of Abstracts: Evaluation, Processing and Predicting of THM Treated Wood Behaviour by Experimental and Numerical Methods., Iasi, Romania, pp. 97–98.
  • Wehsener, J., Brischke, C., Meyer-Veltrup, L., Hartig, J. and Haller, P. (2018) Physical, mechanical and biological properties of thermo-mechanically densified and thermally modified timber using the Vacu3-process. European Journal of Wood and Wood Products, 76(3), 809–821. doi:10.1007/s00107-017-1278-4
  • Willems, W., Lykidis, C., Altgen, M. and Clauder, L. (2015) Quality control methods for thermally modified wood. COST Action FP0904 2010–2014: Thermo-hydro-mechanical wood behaviour and processing. Holzforschung, 69(7), 875–884.
  • Yaltirik, E. and Efe, A. (2000) Dendrology handbook, İstanbul, Turkey: İstanbul University publication, II Press, ISBN: 975-404-594-1.
  • Zhong, Z. W., Hiziroglu, S. and Chan, C. T. M. (2013) Measurement of the surface roughness of wood based materials used in furniture manufacture. Measurement, 46(4), 1482–1487. doi:10.1016/j.measurement.2012.11.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.