445
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Biological durability of pine wood

&
Pages 1050-1064 | Received 05 May 2022, Accepted 18 Jul 2022, Published online: 08 Aug 2022

References

  • Adamopoulos, S., Gellerich, A., Mantanis, G., Kalaitzi, T. and Militz, H. (2012) Resistance of Pinus leucodermis heartwood and sapwood against the brown-rot fungus Coniophora puteana. Wood Material Science & Engineering, 7(4), 242–244.
  • Alfredsen, G., Brischke, C., Marais, B. N., Stein, R. F. A., Zimmer, K. and Humar, M. (2021) Modelling the material resistance of wood - Part 1: Utilizing durability test data based on different reference wood species. Forests, 12(5), 558.
  • Alfredsen, G. and Flæte, P.-O. (2015) Tall oil – performance after a decade of field exposure. Proceedings IRG Annual Meeting, The International Research Group on Wood Protection, IRG/WP 15-30672.
  • Alfredsen, G., Flæte, P.-O., Temiz, A., Eikenes, M. and Militz, H. (2004) Screening of the efficacy of tall oils against wood decaying fungi. Proceedings IRG Annual Meeting, The International Research Group of Wood Preservation, Ljubljana, Slovenia, IRG/WP 04-30354.
  • Alvarez-Novoa, J. C., Erdtman, H. and Lindstedt, G. (1950) Constituents of pine heartwood XIX. The heartwood of Pinus pinea L., Pinus pinaster Aiton, Pinus halepensis Mill., and Pinus nigra Arnold var. calabrica (Loudon) Schneider. Acta Chemica Scandinavica, 4(3), 444–447.
  • Augusta, U. (2007) Untersuchung der natürlichen Dauerhaftigkeit wirtschaftlich bedeutender Holzarten bei verschiedener Beanspruchung im Außenbereich. Doctoral dissertation, University of Hamburg.
  • Aune, P., Sack, R. L. and Selberg, A. (1983) The stave churches of Norway. Scientific American, 249, 96–105.
  • AWPA E10-16 (2016) Laboratory method for evaluating the decay resistance of wood-based materials against pure basidiomycete cultures. Soil/Block Test. American Wood Protection Association: Birmingham, AL, USA.
  • AWPA E14-16 (2016) Laboratory method for rapidly evaluating the decay resistance of wood-based materials in ground contact: Soil bed test. American Wood Protection Association: Birmingham, AL, USA.
  • AWPA E16-16 (2016) Standard field test for Evaluation of wood preservatives to be used above ground (UC3B). Horizontal Lap-Joint Test. American Wood Protection Association: Birmingham, AL, USA.
  • AWPA E30-16 (2016) Standard method for evaluating natural decay resistance of woods using laboratory decay tests. American Wood Protection Association: Birmingham, AL, USA.
  • AWPA E7-15 (2015) Standard field test for evaluation of wood preservatives to be used in ground contact (UC4A, UC4B, UC4C). Stake Test. American Wood Protection Association: Birmingham, AL, USA.
  • AWPA E8-15 (2015) Standard field test for evaluation of wood preservatives to be used in ground contact (UC4A, UC4B, UC4C). Post Test. American Wood Protection Association: Birmingham, AL, USA.
  • AWPA E9-15 (2015) Standard field test for the evaluation of wood preservatives to be used above ground (UC3A and UC3B). L-Joint Test. American Wood Protection Association: Birmingham, AL, USA.
  • AWPC (2015) Protocols for assessment of wood preservatives. The Australasian Wood Preservation Committee, p. 36.
  • Bakken, K. (2016) Preserving the stave churches. Craftmanship and Research. Riksantikvaren; Pax Forlag.
  • Bamber, R. K. and Fukazawa, K. (1985) Sapwood and heartwood: A review. Forest Products Abstracts, 8, 265–278.
  • Bauch, J., Schweers, W. and Berndt, H. (1974) Lignification during heartwood formation: Comparative study of rays and boarded pits membranes in coniferous woods. Holzforschung, 28, 86–53.
  • Becker, G. (1963) Holzbestandteile und Hausbocklarven-Entwicklung. Holz als Roh-und Werkstoff, 21, 285–289.
  • Behr, G. (2011) Treatability variation of Scots pine heartwood from Northern Europe. Diplom Forstwirt thesis, Fakultät Forst-, Geo- und Hydrowissenschaften der Technischen Universität Dresden.
  • Bergström, B. (2003) Chemical and structural changes during heartwood formation in Pinus sylvestris. Forestry, 76, 45–53.
  • Bergström, B., Gustafsson, G., Gref, R. and Ericsson, A. (1999) Seasonal changes of pinosylvin distribution in the sapwood/heartwood boundary of Pinus sylvestris. Trees, 14(2), 65–71.
  • Billek, G. and Ziegler, W. (1962) Zur Biosynthese pflanzlicher Stilbene, 3. Mitt.: Die Biosynthese des Pinosylvin-monomethyläthers. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 93(6), 1430–1440.
  • Bomberger, B. D. (1991) The Preservation and Repair of Historic Log Buildings (Vol. 26) (US Department of the Interior, National Park Service, Cultural Resources, Preservation Assistance).
  • Boyer, W. D. (1990) Pinus palustris Mill., Longleaf pine. Silvics of North America, 1, 405–412.
  • BRE (1977) A Handbook of Softwoods. Building Research Establishment (Princes Risborough: H. M. Stationery office), 63 p.
  • Brischke, C., Alfredsen, G., Humar, M., Conti, E., Cookson, L., Emmerich, L., Flæte, P. O., Fortino, S., Francis, L., Hundhausen, U., Irbe, I., Jacobs, K., Klamer, M., Kržišnik, D., Lesar, B., Melcher, E., Meyer-Veltrup, L., Morrell, J. J., Norton, J., Palanti, S., Presley, G., Reinprecht, L., Singh, T., Stirling, R., Venäläinen, M., Westin, M., Wong, A. H. H. and Suttie, E. (2021a) Modeling the material resistance of wood - Part 2: validation and optimization of the Meyer-Veltrup model. Forests, 12(5), 576.
  • Brischke, C., Alfredsen, G., Humar, M., Conti, E., Cookson, L., Emmerich, L., Flæte, P. O., Fortino, S., Francis, L., Hundhausen, U., Irbe, I., Jacobs, K., Klamer, M., Kržišnik, D., Lesar, B., Melcher, E., Meyer-Veltrup, L., Morrell, J. J., Norton, J., Palanti, S., Presley, G., Reinprecht, L., Singh, T., Stirling, R., Venäläinen, M., Westin, M., Wong, A. H. H. and Suttie, E. (2021b) Modeling the material resistance of wood - Part 3: Relative resistance in above- and in-ground situations - results of a global survey. Forests, 12(5), 590.
  • Brischke, C., Gellerich, A., Militz, H. and Starck, M. (2017) Performance of coated and uncoated horizontal lap-joint members during 20 years of outdoor exposure. Wood Research, 62, 883–894.
  • Brischke, C., Grünwald, L. K. and Bollmus, S. (2020) Effect of size and shape of specimens on the mass loss caused by Coniophora puteana in wood durability tests. European Journal of Wood and Wood Products, 78, 811–819.
  • Brischke, C. and Meyer-Veltrup, L. (2016) Performance of thermally modified wood during 14 years of outdoor exposure. International Wood Products Journal, 7, 89–95.
  • Brischke, C., Meyer, L., Alfredsen, G., Humar, M., Francis, L., Flæte, P. O. and Larsson-Brelid, P. (2013) Natural durability of timber exposed above ground - A survey. Drvna Industrija, 64(2), 113–129.
  • Brischke, C., von Boch-Galhau, N. and Bollmus, S. (2022) Impact of different sterilization techniques and mass loss measurements on the durability of wood against wood-destroying fungi. European Journal of Wood and Wood Products, 80, 35–44.
  • Celimene, C. C., Micales, J. A., Ferge, L. and Young, R. A. (1999) Efficacy of pinosylvins against white-rot and brown-rot fungi. Holzforschung, 53, 491–497.
  • Clark, J. W. (1957) Comparative decay resistance of some common pines, melock, spruce, and true fir. Forest Science, 3, 314–320.
  • Cruz Carrera, R., Carrillo Parra, A., Najera Luna, J. A., Cruz Cobos, F., Hernandez, F. J. and Mendez Gonzalez, J. (2018) Natural durability of wood of seven forest species of El Salto, Durango. Revista Mexicana de Ciencias Forestales, 9, 102–130.
  • Dadzie, P. K., Amoah, M., Boampong, E. and Frimpong-Mensah, K. (2015) Effect of density and moisture content on biological durability of stem and branch wood of Entandrophragma cylindricum (sapele). Journal of the Indian Academy of Wood Science, 12, 44–53.
  • De Angelis, M., Romagnoli, M., Vek, V., Poljanšek, I., Oven, P., Thaler, N., Lesar, B., Kržišnik, D. and Humar, M. (2018) Chemical composition and resistance of Italian stone pine (Pinus pinea L.) wood against fungal decay and wetting. Industrial Crops and Products, 117, 187–196.
  • Ekeberg, D., Flæte, P.-O., Eikenes, M., Fongen, M. and Næss-Andresen, C. F. (2006) Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. Journal of Chromatography A, 1109(2), 267–272.
  • Elaieb, M. T. E., Shel, F., Elouellani, S., Janah, T., Rahouti, M., Thévenon, M. F. and Candelier, K. (2017) Physical, mechanical and natural durability properties of wood from reforestation Pinus halepensis Mill. in the Mediterranean Basin. Bois et Forêts des Tropiques, 331, 19–31.
  • EN 113-2 (2021) Durability of wood and wood-based products—test Method against wood destroying Basidiomycetes—Part. 2: Assessment of inherent or enhanced durability. European Committee for Standardization: Brussels, Belgium.
  • EN 252 (2015) Field test method for determining the relative protective effectiveness of a wood preservative in ground contact. European Committee for Standardization: Brussels, Belgium.
  • EN 330 (2014) Wood preservatives - Determination of the relative protective effectiveness of a wood preservative for use under a coating and exposed out-of-ground contact - Field test: L-joint method. CEN (European Committee for Standardization), Brussels.
  • EN 350 (2016) Durability of wood and wood-based products - Testing and classification of the durability to biological agents of wood and wood-based materials. CEN (European Committee for Standardization), Brussels. EN 13556 (2003) Round and sawn timber - Nomenclature of timbers used in Europe. CEN (European Committee for Standardization), Brussels.
  • Farjon, A. (2018) Pines. Drawings and Descriptions of the Genus Pinus. 2nd ed (Boston, MA: Brill).
  • Fernandes, C., Gaspar, M. J., Pires, J., Alves, A., Simões, R., Rodrigues, J. C., Silva, M. E., Carvalho, A., Brito, J. E. and Lousada, J. L. (2017) Physical, chemical and mechanical properties of Pinus sylvestris wood at five sites in Portugal. iForest, 10, 669–679. doi:10.3832/ifor2254-010
  • Fidah, A., Salhi, N., Janah, T., Rahouti, M., Kabouchi, B., El Alami, A., Ziani, M. and Famiri, A. (2016) Comparative natural durability of four Mediterranean softwoods against wood decay fungi. Journal of the Indian Academy of Wood Science, 13, 132–137.
  • Flæte, P. O. (2007) Techniques for improved utilisation of natural durability of Scots pine (Pinus sylvestris L.). Doctor Scientarum Thesis 2007:13. Norwegian University of Life Sciences. Department of Ecology and Natural Resource Management.
  • Francis, L. P., Norton, J., Melcher, E., Wong, A. H. H., Kok Lai, J., Klamer, M., Konkler, M. J. and Morrell, J. J. (2019) Performance of untreated timbers in above ground decking tests: Preliminary results from an international collaborative trial. Proceedings IRG Annual Meeting. The International Research Group on Wood Protection, Quebec City, Quebec, Canada, IRG/WP 19-10940.
  • Frey-Wyssling, A. and Bosshard, H. H. (1959) Cytology of the ray cells in sapwood and heartwood. Holzforschung, 13, 129–137.
  • Gambichler, T., Boms, S. and Freitag, M. (2004) Contact dermatitis and other skin conditions in instrumental musicians. BMC Dermatology, 4, 1–12.
  • Gernandt, D. S., López, G. G., García, S. O. and Liston, A. (2005) Phylogeny and classification of Pinus. Taxon, 54, 29–42.
  • Gottwald, H. (1958) Handelshölzer (Hamburg: Ferdinand Holzmann).
  • Gref, R., Hakansson, C., Henningsson, B. and Hemming, J. (1999) Influence of wood extractives on brown and white rot decay in Scots pine heart-, light-and sapwood. Material und Organismen, 33(2), 119–128.
  • Gustafson, E. J. and Sturtevant, B. R. (2013) Modeling forest mortality caused by drought stress: implications for climate change. Ecosystems, 16, 60–74.
  • Hafizoglu, H. (1983) Wood extractives of Pinus sylvestris L., Pinus nigra Arn. and Pinus brutia Ten. with special reference to nonpolar components. Holzforschung, 37(6), 321–326.
  • Hamstra, A. A. and Jacob, S. E. (2015) A review of colophonium. The Dermatologist, 23(8), 38–41.
  • Harju, A. M. and Venäläinen, M. (2006) Measuring the decay resistance of Scots pine heartwood indirectly by the Folin-Ciocalteu assay. Canadian Journal of Forest Research, 36(7), 1797–1804.
  • Harju, A. M., Venäläinen, M., Anttonen, S., Viitanen, H., Kainulainen, P., Saranpää, P. and Vapaavuori, E. (2003) Chemical factors affecting the brown-rot decay resistance of Scots pine heartwood. Trees, 17, 263–268.
  • Hart, J. H. and Shrimpton, D. M. (1979) Role of stilbenes in resistance of wood to decay. Phytopathology, 69(10), 1138–1143.
  • Hillis, W. E. (1987) Heartwood and Tree Exudates (Berlin: Springer-Verlag). ISBN 3-540-17593-8.
  • Hjulström, B., Isaksson, S. and Hennius, A. (2006) Organic geochemical evidence for pine tar production in middle Eastern Sweden during the Roman Iron Age. Journal of Archaeological Science, 33, 283–294.
  • Hovelstad, H., Leirset, I., Oyaas, K. and Fiksdahl, A. (2006) Screening analyses of pinosylvin stilbenes, resin acids and lignans in Norwegian conifers. Molecules, 11(1), 103–114.
  • Humar, M. (2013) Influence of Norway spruce and European larch heartwood ring-width on extractive content and durability. Drvna Industrija, 64, 79–85.
  • Humar, M., Fabčič, B., Zupančič, M., Pohleven, F. and Oven, P. (2008) Influence of xylem growth ring width and wood density on durability of oak heartwood. International Biodeterioration & Biodegradation, 62, 368–371.
  • Humar, M., Kržišnik, D., Lesar, B. and Brischke, C. (2019) The performance of wood decking after five years of exposure: Verification of the combined effect of wetting ability and durability. Forests, 10(10), 903.
  • Hwang, S. W., Horikawa, Y., Lee, W. H. and Sugiyama, J. (2016) Identification of Pinus species related to historic architecture in Korea using NIR chemometric approaches. Journal of Wood Science, 62, 156–167.
  • IAWA Committee (1964) Multilingual glossary of terms used in wood anatomy. Committee on Nomenclature, International Association of Wood Anatomists (IAWA). Verlagsanstalt Buchdruckerei Konkordia Winterthur, Zürich, Switzerland.
  • Johann, K. (2020) Gold der Bäume. Harze, Gummis und Balsame als Heilmittel und Räucherstoffe (Mittertreffling: Freya).
  • Jorgensen, E. (1961) The formation of pinosylvin and its monomethyl ether in the sapwood of Pinus resinosa Ait. Canadian Journal of Botany, 39(7), 1765–1772.
  • Krauskopf, C. (2006) Just noble things? Studies on the material culture of 13th and 14th century nobility. Château Gaillard, 22, 195–204.
  • Larjavaara, M. and Muller-Landau, H. C. (2010) Rethinking the value of high wood density. Functional Ecology, 24, 701–705.
  • Lee, S. K., Lee, H. J., Min, H. Y., Park, E. J., Lee, K. M., Ahn, Y. H., Cho, Y. J. and Pyee, J. H. (2005) Antibacterial and antifungal activity of pinosylvin, a constituent of pine. Fitoterapia, 76(2), 258–260.
  • Lucas, A. and Harris, J. R. (2011) Ancient Egyptian Materials and Industries (Mineola, NY: Dover Publications).
  • Lukowsky, D. (2017) The decline of the house longhorn beetle (Hylotrupes bajulus) in Europe and its possible causes. International Wood Products Journal, 8, 166–171.
  • Mahlke, F., Troschel, E. and Liese, J. (1950) Handbuch der Holzkonservierung (Berlin: Springer).
  • Mantanis, G. I. (2017) Chemical modification of wood by acetylation or furfurylation: A review of the present scaled-up technologies. BioResources, 12, 4478–4489.
  • Matsumura, J., Booker, R. E., Donaldson, L. A. and Ridoutt, B. G. (1998) Impregnation of radiata pine wood by vacuum treatment: identification of flow paths using fluorescent dye and confocal microscopy. IAWA Journal, 19, 25–33.
  • Matsuoka, S. and Amemiya, S. (1970) Stake test at Asakawa experiment forest. (3) The natural durability of some woods. Bulletin of the Government Forest Experiment Station, 232, 109–135.
  • Metsä-Kortelainen, S. and Viitanen, H. (2017) Durability of thermally modified sapwood and heartwood of Scots pine and Norway spruce in the modified double layer test. Wood Material Science & Engineering, 12(3), 129–139.
  • Meyer-Veltrup, L., Brischke, C., Alfredsen, G., Humar, M., Flæte, P. O., Isaksson, T., Larsson Brelid, P., Westin, M. and Jermer, J. (2017) The combined effect of wetting ability and durability on outdoor performance of wood: development and verification of a new prediction approach. Wood Science and Technology, 51(3), 615–637.
  • Mirski, R., Dziurka, D., Chuda-Kowalska, M., Wieruszewski, M., Kawalerczyk, J. and Trociński, A. (2020) The usefulness of pine timber (Pinus sylvestris L.) for the production of structural elements. Part I: Evaluation of the quality of the pine timber in the bending test. Materials, 13, 3957.
  • Mohareb, A., Sirmah, P., Pétrissans, M. and Gérardin, P. (2012) Effect of heat treatment intensity on wood chemical composition and decay durability of Pinus patula. European Journal of Wood and Wood Products, 70(4), 519–524.
  • Muller, J. J., Nagel, L. M. and Palik, B. J. (2019) Forest adaptation strategies aimed at climate change: Assessing the performance of future climate-adapted tree species in a northern Minnesota pine ecosystem. Forest Ecology and Management, 451, 117539.
  • Nerg, A. M., Heijari, J., Noldt, U., Viitanen, H., Vuorinen, M., Kainulainen, P. and Holopainen, J. K. (2004) Significance of wood terpenoids in the resistance of Scots pine provenances against the old house borer, Hylotrupes bajulus, and brown-rot fungus, Coniophora puteana. Journal of Chemical Ecology, 30, 125–141.
  • Øvrum, A. and Flæte, P. O. (2008) Kjerneved av furu. FOKUS på tre, 25. http://www.trefokus.no/resources/filer/fokus-pa-tre/25-Kjerneved-av-furu.pdf.
  • Peltola, H., Kellomäki, S., Väisänen, H. and Ikonen, V. P. (1999) A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Canadian Journal of Forest Research, 29, 647–661.
  • Perrot, T., Salzet, G., Amusant, N., Beauchene, J., Gerardin, P., Dumarcay, S., Sormani, R., Morel-Rouhier, M. and Gelhaye, E. (2020) A reverse chemical ecology approach to explore wood natural durability. Microbial Biotechnology, 13, 1673–1677.
  • Petrovic, M. and Miric, M. (1981) The comparative resistance to fungi of the wood of munika (Pinus heldreichii Christ.), fir (Abies alba Mill.) and spruce (Picea excelsa Poir.) compared with Pinus sylvestris L., and some physical and mechanical characteristics of munika. Proceedings IRG Annual Meeting. The International Research Group on Wood Preservation, Sarajevo, Yugoslavia, IRG/WP 1129.
  • Polubojarinov, O. I., Chubinsky, A. N. and Martinsson, O. (2000) Decay resistance of Siberian larch wood. AMBIO: A Journal of the Human Environment, 29, 352–353.
  • Rennerfelt, E. (1956) The natural resistance to decay of certain conifers. Friesia Kobenhavn, 5, 361–365.
  • Scheffer, T. C. and Morrell, J. J. (1998) Natural durability of wood: A worldwide checklist of species. Forest Research Laboratory, Oregon State University, College of Forestry. Research Contribution, 22, 58.
  • Schmidtling, R. C. and Amburgey, T. L. (1982) Genetic variation in decay susceptibility and its relationship to growth and specific gravity in loblolly pine. Holzforschung, 36, 159–161.
  • Schulz, G. (1958) Vergleichende Untersuchungen mit verschiedenen Stämmen von Lentinus Iepideus, gleichzeitig ein Beitrag zum Soil-Block-Verfahren. Holz als Roh- und Werkstoff, 16(11), 435–444.
  • Singh, A. P., Gumber, S., Singh, R. D. and Pandey, R. (2021) Differentiation of diploxylon and haploxylon pines in spatial distribution, and adaptational traits. Acta Ecologica Sinica. doi:10.1016/j.chnaes.2021.07.007
  • Stirling, R., Alfredsen, G., Brischke, C., De Windt, I., Francis, L. P., Frühwald Hansson, E., Humar, M., Jermer, J., Klamer, M., Kutnik, M., Laks, P. E., Le Bayon, I., Metsä-Kortelainen, S., Meyer-Veltrup, L., Morris, P. I., Norton, J., Singh, T., Van Acker, J., Van den Bulcke, J., Venås, T. M., Viitanen, H. and Wong, A. H. H. (2016) Global survey on durability variation–on the effect of the reference species. In 47th Annual Meeting of the International Research Group on Wood Protection (IRG47), May 15-19, 2016, Lisbon, Portugal.
  • Taylor, A. M., Gartner, B. L. and Morrell, J. J. (2002) Heartwood formation and natural durability – A review. Wood and Fiber Science, 34, 587–611.
  • Uçar, G. and Balaban, M. (2002) Cyclohexane extracts of black pine wood naturally grown in Eastern Thrace. Holz als Roh- und Werkstoff, 60(1), 34–40.
  • Uçar, G. and Fengel, D. (1995) Variation in composition of extractives from wood of Pinus nigra varieties. Phytochemistry, 38(4), 877–880.
  • Van Acker, J., Stevens, M., Carey, J., Sierra-Alvarez, R., Militz, H., Le Bayon, I., Kleist, G. and Peek, R. D. (2003) Biological durability of wood in relation to end-use. Holz als Roh- und Werkstoff, 61(1), 35–45.
  • Van den Bulcke, J., De Windt, I., Defoirdt, N. and Van Acker, J. (2011) Non-destructive evaluation of wood decay. Proceedings IRG Annual Meeting. The International Research Group on Wood Protection, Queenstown, New Zealand, IRG/WP/11-20479.
  • Vek, V., Poljanšek, I., Humar, M., Willför, S. and Oven, P. (2020) In vitro inhibition of extractives from knotwood of Scots pine (Pinus sylvestris) and black pine (Pinus nigra) on growth of Schizophyllum commune, Trametes versicolor, Gloeophyllum trabeum and Fibroporia vaillantii. Wood Science and Technology, 54, 1645–1662.
  • Venäläinen, M., Harju, A. M., Nikkanen, T., Paajanen, L., Velling, P. and Viitanen, H. (2001) Genetic variation in the decay resistance of Siberian larch (Larix sibirica Ledeb.) wood. Holzforschung, 55, 1–6.
  • Venäläinen, M., Harju, A. M., Saranpää, P., Kainulainen, P., Tiitta, M. and Velling, P. (2004) The concentration of phenolics in brown-rot decay resistant and susceptible Scots pine heartwood. Wood Science and Technology, 38(2), 109–118.
  • Venäläinen, M., Heikkonen, S., Terziev, N. and Torniainen, P. (2019) Durability of the Siberian larch heartwood timber of different origin: the results of 11-year ground contact test in Finland. Siberian Journal of Forest Science, 3, 14–19. (in English with Russian abstract).
  • Vintila, E. (1939) Untersuchungen über Raumgewicht und Schwindmass von Früh- und Spätholz bei Nadelhölzern. Holz als Roh- und Werkstoff, 2, 345–357.
  • Wagenführ, R. and Wagenführ, A. (2021) Holzatlas. 7th ed (Munich: Carl Hanser).
  • Welzbacher, C. R. (2001) Vergleichende Prüfung von umweltfreundlichen, biozidfreien Verfahren zur Vergütung von Holz durch Hitze (Germany: Diploma thesis, Fachhochschule Eberswalde).
  • Welzbacher, C. R., Heger, F., Girardet, F., Navi, P. and Rapp, A. O. (2004) Decay resistance of thermo-hydro-mechanically densified wood. Proceedings of COST E22 Final workshop, Estoril, Portugal, 22-23 March 2004.
  • Wijayanto, A., Dumarçay, S., Gérardin-Charbonnier, C., Sari, R. K., Syafii, W. and Gérardin, P. (2015) Phenolic and lipophilic extractives in Pinus merkusii Jungh. et de Vries knots and stemwood. Industrial Crops and Products, 69, 466–471.
  • Willför, S., Hemming, J., Reunanen, M. and Holmbom, B. (2003) Phenolic and lipophilic extractives in Scots pine knots and stemwood. Holzforschung, 57, 359–372.
  • Zang, C., Rothe, A., Weis, W. and Pretzsch, H. (2011) Zur Baumarteneignung bei Klimawandel: Ableitung der Trockenstress-Anfälligkeit wichtiger Waldbaumarten aus Jahrringbreiten. Allgemeine Forst- und Jagdzeitschrift, 182, 98–112.
  • Zimmer, K. P. (2014) Variation in treatability of Scots pine sapwood from northern Europe. PhD thesis, Norwegian University of Life Sciences, 98 p.
  • Zimmer, K. and Melcher, E. (2017) A screening study on extractive content and composition of Scots pine heartwood of three stands with close proximity and their resistance against basidiomycetes. International Wood Products Journal, 8(1), 45–49. doi:10.1080/20426445.2016.1271091

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.