849
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Chemical resistance of acetylated radiata pine sliced veneers

, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 1467-1477 | Received 07 Jul 2022, Accepted 02 Dec 2022, Published online: 16 Dec 2022

References

  • Accoya product certificate [online], available at: https://www.accoya.com/app/uploads/2020/05/Accsys-Technologies-ENG-33058-21-KOMO-product-certificate.pdf [Accessed 28 January 2022].
  • CARpenTiER [online]. Accessed 23 May 2022, available at: https://projekte.ffg.at/projekt/3915331.
  • Explore wood [online]. Accessed 1 June 2022, available at: https://www.metsagroup.com/metsawood/explore-wood/?ba=937&ct=955.
  • For(s)tschritt [online]. Accessed 23 May 2022, available at: https://www.tff-kassel.de/forschung/projekte/forstschritt/.
  • HAMMER [online]. Accessed 23 May 2022, available at: http://www.projekt-hammer.de/.
  • WoodC.A.R [online]. Accessed 23 May 2022, available at: https://www.woodcar.eu/index_de.html.
  • Wood Handbook. Wood as an Engineering Material (2021) USDA Forest Service, Forest Products Laboratory.
  • Ahmed, S. A., Chun, S. K., Miller, R. B., Chong, S. H., and Kim, A. J. (2011) Liquid penetration in different cells of two hardwood species. Journal of Wood Science, 57(3), 179–188.
  • Andresen, C., Demuth, C., Lange, A., Stoick, P., andPruszko, R. (2012) Biobased automobile parts investigation.
  • Ashby, M. F. (1999) Materials Selection in Mechanical Design (2nd ed.). (Oxford: Butterworth-Heinemann).
  • Austrian Standards Institute (1994) ÖNORM ÖNORM EN 20187:1994: 01.03.1994: Österreichisches Normungsinstitut.
  • Austrian Standards Institute (2005) ÖNORM ÖNORM EN 789:2005-04-01: 01.04.2005: Austrian Standards plus GmbH.
  • Austrian Standards International. ÖNORM ÖNORM EN ISO 2812-1:2018 03 15.
  • Austrian Standards International. ÖNORM ÖNORM EN ISO 2812-2:2019 04 15.
  • Baumann, G., Brandner, R., Müller, U., Kumpenza, C., Stadlmann, A., and Feist, F. (2020) Temperature-related properties of solid birch wood under quasi-static and dynamic bending. Materials, 13(23), 5518.
  • Baumann, G., Brandner, R., Müller, U., Kumpenza, C., Stadlmann, A., and Feist, F. (2021) A comparative study on the temperature effect of solid birch wood and solid beech wood under impact loading. Materials, 14(24), 15.
  • Baumann, G., Stadlmann, A., Kurzböck, C. and Feist, F. (2019) Crash-proof wood composites in lightweight bodyworks of the future. ATZ Worldwide, 121(11), 48–51.
  • Beck, G., Thybring, E. E. and Thygesen, L. G. (2018) Brown-rot fungal degradation and de-acetylation of acetylated wood. International Biodeterioration & Biodegradation, 135, 62–70.
  • Buchelt, B. and Pfriem, A. (2011) Influence of wood specimen thickness on its mechanical properties by tensile testing: solid wood versus veneer. Holzforschung, 65(2), 1–3.
  • Buchelt, B. and Wagenführ, A. (2008) The mechanical behaviour of veneer subjected to bending and tensile loads. Holz als Roh- und Werkstoff, 66(4), 289–294.
  • Chen, X., Chen, G., Huang, L., and Shi, M.F. (2018) Calibration of GISSMO Model for fracture prediction of a super high formable advanced high strength steel.
  • Chum, H. L. (1989) Assessment of biobased materials.
  • Cremonini, C., Negro, F. and Zanuttini, R. (2015) Wood-based panels for land transport uses. Drewno, 58, 127–135.
  • Desch, H. E. and Dinwoodie, J. M. (1996) Timber Structure, Properties, Conversion and Use (London: Macmillan Education UK).
  • Digaitis, R., Thybring, E. E., Thygesen, L. G. and Fredriksson, M. (2021) Targeted acetylation of wood: a tool for tuning wood-water interactions. Cellulose, 28(12), 8009–8025.
  • Engelung Thybring, E. (2013) The decay resistance of modified wood influenced by moisture exclusion and swelling reduction. International Biodeterioration & Biodegradation, 82, 87–95, available at: https://www.sciencedirect.com/science/article/pii/S0964830513000589#!
  • European Commission (ed.) (2018) Annex to the communication from the comission to the European parliament, the council, the European economic and social committee and the committee of the regions. Europe on the move Sustainable Mobility for Europe: safe, connected and clean. Brussels.
  • Fodor, F., Lankveld, C. and Németh, R. (2017) Testing common hornbeam (Carpinus betulus L.) acetylated with the Accoya method under industrial conditions. iForest - Biogeosciences and Forestry, 10(6), 948–954.
  • Fuchs, W. (1928) Zur Kenntnis des genuinen Lignins, I.: Die Acetylierung des Fichtenholzes, available at: https://doi.org/10.1002/cber.19280610512.
  • Galos, J., Sutcliffe, M. and Newaz, G. (2017) Mechanical behaviour of phenolic coated Finnish birch plywood with simulated service damage. Wood Material Science and Engineering, 12(5), 307–315.
  • Graf, J., Klopfer, R. and Röver, D. (2019) Neue Potentiale im konstruktiven Holzbau durch acetylierte Buche.
  • Grinins, J., Biziks, V., Marais, B. N., Rizikovs, J., and Militz, H. (2021) Weathering stability and durability of birch plywood modified with different molecular weight phenol-formaldehyde oligomers. Polymers, 13(2), 2–3. https://www.mdpi.com/2073-4360/13/2/175.
  • Große, T., Fischer, F., Kohl, D., Müller, U., Feist, F., and Kurzböck, C. (2022) Modellierung von Holz in crash-relevanten Fahrzeugstrukturen am Beispiel eines crashrohrs [Modelling of wood in crash-relevant vehicle structures using the example of a crash tube]. In A. Wagenführ (ed.) Tagungsband des 20. Holztechnologischen Kolloquiums Dresden 28.-29. April 2022 (Dresden: Technische Uni Dresden).1–19.
  • Gryparis, E., Papadopoulos, P., Leligou, H. C. and Psomopoulos, C. S. (2020) Electricity demand and carbon emission in power generation under high penetration of electric vehicles. A European Union perspective. Energy Reports, 6, 475–486.
  • Handbook, Wood. Wood as an Engineering Material. (2021) USDA Forest Service, Forest Products Laboratory.
  • Hill, C. A. S. (2006) Wood Modification. Chemical, Thermal and Other Processes (Chichester: Wiley).
  • Holbery, J. and Houston, D. (2006) Natural-Fiber-Reinforced Polymer Composites in Automotive Applications.
  • Hom, S. K., Ganguly, S., Bhoru, Y.U., and Samani, A. (2020) Effect of chemical modification on dimensional stability of Pinus radiata D. Don using acetic anhydride. Journal of Forest Science, 66(5), 208–217.
  • Horn, O. (1928) Zur Acetylierung des Buchenholzes, available at: https://doi.org/10.1002/cber.19280611122.
  • Ibach, R. E. and Rowell, R. M. (2021) USDA forest service forest products laboratory: acetylation of wood 1945–1966. Forests, 12(3), 260.
  • Jia, L., Chu, J., Li, J., Ren, J., Huang, P. and Li, D. (2020) Formaldehyde and VOC emissions from plywood panels bonded with bio-oil phenolic resins. Environmental Pollution, 264, 114819.
  • Jones, D. and Sandberg, D. (2020) A review of wood modification globally – updated findings from COST FP1407. Interdisciplinary Perspectives on the Built Environment, 1, 2.
  • Jost, T., Müller, U. and Feist, F. (2014) Holzverbundwerkstoffe im Automobilbau der Zukunft? – Grundvoraussetzung: Crashsimulation von Holzkomponenten. Fachaufsatz Werkstoffprüfung.
  • Jost, T., Müller, U. and Feist, F. (2018) Wood composites for future automotive engineering? – Basic requirement: wood composites for future automotive engineering? – Basi requirement; crash simulation of wood-based components. Konstruktion, 70, 74–82.
  • Kass, A., Wangaard, F. and Schroeder, H. A. (1970) Chemical degradation of wood: the relationship between strength retention and pentosan content.
  • Kim, J. Y. and Park, J. S. (1991) An Anatomical Research on Liquid-Penetration and Penetration-Path of Wood, available at: https://koreascience.kr/article/JAKO199100238220148.pdf.
  • Kollmann, F. (1951) Anatomie und Pathologie, Chemie, Physik Elastizität und Festigkeit (Berlin: Springer Berlin Heidelberg).
  • Kollmann, F. (1982) Technologie des Holzes und der Holzwerkstoffe, 201–400.
  • Kretschmann, D. E. (2007) Kirk-Othmer Encyclopedia of Chemical Technology.
  • Küch, W. (1939) Untersuchungen an Holz, Sperrholz und Schichthölzern im Hinblick auf ihre Verwendung im Flugzeugbau. Holz als Roh- und Werkstoff, 2. Jahrgang (7/8), 258–259.
  • Lahtela, V. and Karki, T. (2015) Determination and comparison of some selected properties of modified wood. Wood Research, 60, 763–772.
  • Lai, G. and Plönning, S. (2019) Fracture characteristics of acetylated birch – experimental and numerical studies.
  • Lankveld, C., Alexander, J., Tangen, A., Olson, T. and Bongers, F. (2014) Accoya® wood flooring and decking in extreme environments. European Conference on Wood Modification.
  • Leitgeb, W., Jost, T., Mayrhofer, P., Wagner, W., Kirschbichler, S., and Müller, U. (2016) Holz im strukturellen Fahrzeugbau. 2. internationales Fahrzeugkolloquium, 35–46.
  • Levy, J. F. and Eveleigh, D. E. (1990) The Natural History of the Degradation of Wood [and Discussion].
  • Mantanis, G. (2017) Chemical modification of wood by acetylation or furfurylation: A review of the present scaled-up technologies. Bioresources, 12, 4478–4489.
  • Militz, H. and Krause, A. (2004) Holzmodifizierung für den Fenster- und Fassadenbau: Mehr als nur Holz. glaswelt Spezial (6), 40–42.
  • Moghaddam, M. S., Claesson, P. M., Wålinder, M. E. P. and Swerin, A. (2014) Wettability and liquid sorption of wood investigated by Wilhelmy plate method. Wood Science and Technology, 48(1), 161–176.
  • MoveWood. [online]. Accessed 23 May 2022, available at: https://www.innovationszentrum-weiz.at/veranstaltungen-aktuelles/detail/projekt-movewood.
  • O'Halloran, M. R. (1975) Plywood in hostile environments: Physical properties and applications. APA Research report (132).
  • Persaud, N., Lehr, J., and Keeley, E. (2005) Vapor pressure. Water encyclopedia (2005). Water Encyclopedia.
  • Pramreiter, M., Bodner, S. C., Keckes, J., Stadlmann, A., Feist, F., Baumann, G., Maawad, E. and Müller, U. (2021) Predicting strength of Finnish birch veneers based on three different failure criteria. Holzforschung, 75(9), 847–856.
  • Rowell, R. M. (1992) Opportunities for value-added bio-based composites.
  • Roy, W. R. (2016) The environmental fate of representative antistatic agents and components. In Handbook of Antistatics (Elsevier), pp. 421–431.
  • Ruiz, V., Pfrang, A., Kriston, A., Omar, N., Van den Bossche, P. and Boon-Brett, L. (2018) A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renewable and Sustainable Energy Reviews, 81, 1427–1452.
  • Rusdi, M., Moroi, Y., Nakahara, H., and Shibata, O. (2005) Evaporation from water−ethylene glycol liquid mixture. Langmuir: The ACS Journal of Surfaces and Colloids, 21(16), 7308–7310.
  • Ryntz, R. and Kozora, S. (2019) Sustainable materials in automotive. Physical Sciences Reviews, 4(12), 1–4.
  • Sarika, P. R., Nancarrow, P., Khansaheb, A. and Ibrahim, T. (2020) Bio-Based alternatives to phenol and formaldehyde for the production of resins. Polymers, 12(10), 2237.
  • Schnabel, T. (2009) Holzoberflächen - Klassifizierung, Modellbildung und Umweltsimulation von optischen Eigenschaften. Dissertation. Technische Universität München.
  • Slabohm, M., Mai, C. and Militz, H. (2022) Bonding acetylated veneer for engineered wood products-a review. Materials (Basel, Switzerland), 15(10), 1.
  • Staudacher, R. (2015) Ausgewählte mechanische Eigenschaften von Furnier der Holzarten Fichte, Birke und Buche. Master thesis. Technical University of Graz.
  • Tanritanir, E., Hiziroglu, S. and As, N. (2006) Effect of steaming time on surface roughness of beech veneer. Building and Environment, 41(11), 1494–1497.
  • Tarkow, H. and Stamm, A. J. (1955) Acetylated Wood.
  • Teacă, C.-A. and Tanasă, F. (2020) Wood surface modification—classic and modern approaches in wood chemical treatment by esterification reactions. Coatings, 10(7), 629.
  • Wang, Y., Wang, T., Crocetti, R. and Wålinder, M. (2021) Mechanical Properties of Acetylated Birch Plywood Loaded Parallel to the Face Grain (World Conference on Timber Engineering).
  • Wang, Y., Wang, T., Crocetti, R., and Wålinder, M. (2022) Experimental investigation on mechanical properties of acetylated Birch plywood and its angle-dependence. SSRN Electronic Journal.
  • Wexler, A. (1976) Vapor pressure formulation for water in range 0 to 100°C. A revision. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 80A(5-6), 775–785.
  • Zimmer, B., Hölzl, F., Bongers, F., Nüske, J., and Winkler, J. (2003) Erprobung eines Acetylierungsverfahrens für heimische Holzarten und Holzprodukte. Zusammenfassender Bericht der Ergebnisse.
  • Žlahtič-Zupanc, M., Lesar, B. and Humar, M. (2018) Changes in moisture performance of wood after weathering. Construction and Building Materials, 193, 529–538.