246
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Strain measurement in glulam timber for bridges with embedded strain gauges and detection of moisture-variation effects

, , , &
Pages 1597-1607 | Received 14 Sep 2022, Accepted 02 Jan 2023, Published online: 10 Jan 2023

References

  • Almeida, G., Huber, F. and Perré, P. (2014) Free shrinkage of wood determined at the cellular level using an environmental Scanning Electron Microscope. Maderas. Ciencia y Tecnología, 16(2), 187–198. doi:10.4067/S0718-221X2014005000015
  • Angst, V. and Malo, K. A. (2013) Moisture-induced stresses in glulam cross sections during wetting exposures. Wood Science and Technology, 47, 227–241. doi:10.1007/s00226-012-0493-8
  • Balageas, D., Fritzen, C.-P. and Güemes, A. (2006) Structural Health Monitoring (London: ISTE Ltd).
  • Björngrim, N., Hagman, O. and Wang, X. (2016) Moisture content monitoring of a timber footbridge. BioResources, 11, 3904–3913. doi:10.15376/biores.11.2.3904-3913
  • Boller, C., Chang, F. K. and Fujino, Y. (2009) Encyclopedia of Structural Health Monitoring (John Wiley & Sons, Ltd). ISBN: 978-0-470-05822-0.
  • Brischke, C. and Rapp, A. O. (2008) Influence of wood moisture content and wood temperature on fungal decay in the field: Observations in different micro-climates. Wood Science and Technology, 42, 663–677. doi:10.1007/s00226-008-0190-9
  • CIRAD (2012) Tropix 7: 1998 - 2011. doi:10.18167/74726F706978
  • Dietsch, P., Franke, S., Franke, B., Gamper, A. and Winter, S. (2015a) Methods to determine wood moisture content and their applicability in monitoring concepts. Journal of Civil Structural Health Monitoring, 5, 115–127. doi:10.1007/s13349-014-0082-7
  • Dietsch, P., Gamper, A., Merk, M. and Winter, S. (2015b) Monitoring building climate and timber moisture gradient in large-span timber structures. Journal of Civil Structural Health Monitoring, 5(2), 153–165. doi:10.1007/s13349-014-0083-6
  • Dubois, F., Sauvat, N. and Petit, C. (2006) Modeling of the Long-Term Behavior of the Merle Timber Bridge. Technical rapport (Egletons).
  • Dupont (2002) Comportements de Capteurs à Fibres Optiques, noyés ou fixés en surface d’ouvrages en béton. Thèse de doctorat, Ecole Nationale des Ponts et Chaussées.
  • Dupré, J. C., Jullien, D., Uzielli, L., Hesser, F., Riparbelli, L., Gauvin, C., Mazzantic, P., Gril, J., Tournillon, G., et al. (2020) Experimental study of the hygromechanical behaviour of a historic painting on wooden panel: Devices and measurement techniques. Journal of Cultural Heritage, 46, 165–175. doi:10.1016/j.culher.2020.09.003
  • Ekevad, M., Lundgren, N. and Flodin, J. (2011) Drying shrinkage of sawn timber of Norway spruce (Picea abies): Industrial measurements and finite element simulations. Wood Material Science and Engineering, 6(1-2), 41–48. doi:10.1080/17480272.2010.523121
  • EN 14080 (2013) Timber structures - glued laminated timber and glued solid timber - requirements.
  • EN 408 (2012) Timber structures - structural timber and glued laminated timber—determination of some physical and mechanical properties.
  • Fortino, S., Hradil, P., Genoese, A., Genoese, A. and Pousette, A. (2019a) Numerical hygro-thermal analysis of coated wooden bridge members exposed to Northern European climates. Construction and Building Materials, 208, 492–505. doi:10.1016/j.conbuildmat.2019.03.012
  • Fortino, S., Hradil, P. and Metelli, G. (2019b) Moisture-induced stresses in large glulam beams. Case study: Vihantasalmi Bridge. Wood Material Science & Engineering, 14(5), 366–380. doi:10.1080/17480272.2019.1638828
  • Franke, B., Franke, S. and Müller, A. (2015) Case studies: Long-term monitoring of timber bridges. Journal of Civil Structural Health Monitoring, 5, 195–202. doi:10.1007/s13349-014-0093-4
  • Franke, B., Franke, S., Müller, A., et al. (2013) Long term monitoring of timber bridges - Assessment and results. Advanced Materials Research, 778, 749–756. doi:10.4028/www.scientific.net/AMR.778.749
  • Franke, B., Franke, S., Schiere, M. and Müller, A. (2019) Moisture content and moisture-induced stresses of large glulam members: Laboratory tests, in-situ measurements and modelling. Wood Material Science & Engineering, 14, 243–252. doi:10.1080/17480272.2018.1551930
  • Franke, B., Schiere, M. and Franke, S. (2018) Stress developments in large timber cross sections in relation to geometry and encountered climate. In: World Conference on Timber Engineering, August 20-23 in Seoul.
  • Franke, S., Franke, B., Schiere, M. and Muller, A. (2017) Timber bridges – Load carrying behaviour according to climate changes. In: 39th IABSE Symposium – Engineering the Future, September 21-23, Vancouver.
  • Froidevaux, J., Volkmer, T., Ganne-Chédeville, C., Gril, J. and Navi, P. (2012) Viscoelastic behaviour of aged and non-aged spruce wood in the radial direction. Wood Material Science and Engineering, 7(1), 1–12. doi:10.1080/17480272.2011.629735
  • Glass, S. V. and Zelinka, S. L. (2010) Wood Handbook: Moisture Relations and Physical Properties of Wood. General Technical Report FPL–GTR–190. Madison, WI: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory.
  • Glišić, B. and Inaudi, D. (2007) Fibre optic methods for structural health monitoring (Ltd.: John Wiley & Sons). ISBN: 978-0-470-06142-8).
  • Gustafsson, A., Pousette, A. and Björngrim, N. (2010) Health monitoring of timber bridges. In: Proceedings of 1st International Conference on Timber Bridges, Lillehammer, Norway.
  • Häglund, M. (2008) Varying moisture content and eigen-stresses in timber elements. Wood Material Science and Engineering, 3(1-2), 38–45. doi:10.1080/17480270802573602
  • Hearmon, R. F. S. and Paton, J. M. (1964) Moisture content changes and creep of wood. Forest Products Journal, 14(8), 357–359.
  • Hofinger, M., Pock, T. and Moosbrugger, T. (2019) Determination of the moisture change behavior of cross-laminated timber using an optical flow based computer vision technique. Wood Material Science & Engineering, 14(5), 332–341. doi:10.1080/17480272.2019.1646805
  • Jönsson, J. (2005) Moisture induced stresses in timber structures. Technical Report TVBK-1031 (Dissertation, Division of Structural Engineering, Lund University of Technology).
  • Koch, J., Simon, A. and Arndt, R. W. (2016) Monitoring of Moisture Content of Protected Timber Bridges. In Proceedings of WCTE 2016 (World Conference on Timber Engineering), Vienna, Austria.
  • Legrand, V., TranVan, L., Jacquemin, F. and Casari, P. (2015) Moisture-uptake induced internal stresses in balsa core sandwich composite plate: Modeling and experimental. Composite Structures, 119, 355–364. doi:10.1016/j.compstruct.2014.09.012
  • Li, H., Perrin, M., Eyma, F., Jacob, X. and Gibiat, V. (2018) Moisture content monitoring in glulam structures by embedded sensors via electrical methods. Wood Science and Technology, 52, 733–752. doi:10.1007/s00226-018-0989-y
  • Loulou, L. (2013) Durabilité de l’assemblage mixte bois-béton collé sous chargement hydrique. Thèse de doctorat, Université (Paris-Est).
  • Merakeb, S. (2006) Modélisation des structures en bois en environnement variable. Thèse de doctorat, Université de Limoges.
  • Moses, D., Alexander, M., McAlister, K., et al. (2017) Ontario Wood Bridge Reference Guide. North Bay, Canada.
  • Murata, K. and Masuda, M. (2001) Observation of the swelling behavior of coniferous cells using a confocal scanning laser microscope and a digital image correlation method. Materials Science Research International, 7(13), 200–205. doi:10.2472/jsms.50.9Appendix_200
  • NF B 51-003 (1985) General test conditions - Physical and mechanical tests.
  • Nguyen, S. L. (2016) Modélisation hydromécanique du bois : application au sapin blanc du Massif Central. Thèse de doctorat (Université Blaise Pascal-Clermont-Ferrand).
  • Perrin, M., Yahyaoui, I. and Gong, X. (2019) Acoustic monitoring of timber structures: Influence of wood species under bending loading. Construction and Building Materials, 208, 125–134. doi:10.1016/j.conbuildmat.2019.02.175
  • SETRA (2006) Timber bridges: how to ensure their durability. SETRA (Service d’Etudes Technique des Routes et Auto-routes) (France).
  • Skaar, C. (1988) Electrical properties of wood. In Wood-Water Relations. Springer Series in Wood Science (Berlin, Heidelberg: Springer.
  • Sooru, M., Kasepuu, K., Kask, R. and Lille, H. (2015) Impact of wetting/oven-drying cycles on the mechanical and physical properties of birch plywood. IOP Conference Series: Materials Science and Engineering, 96, 012075. doi:10.1088/1757-899X/96/1/012075
  • Stamm, A. J. (1929) The fiber-saturation point of wood as obtained from electrical conductivity measurements. Industrial & Engineering Chemistry Analytical Edition, 1, 94–97.
  • Sun, M., Staszewski, W. J. and Swamy, R. N. (2010) Smart sensing technologies for structural health monitoring of civil engineering structures. Advances in Civil Engineering, 2010, 724962. doi:10.1155/2010/724962
  • Tannert, T. and Berger, R. (2011) Remote moisture monitoring of timber bridges: a case study. In: 5th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-5) 2011 11-15 December, 2011, Cancún.
  • Uwizeyimana, P. (2021) Suivi de la santé structurale des infrastructures en bois par intégration de capteurs, Doctoral Dissertation (Université de Toulouse).
  • Uwizeyimana, P., Perrin, M. and Eyma, F. (2020) Moisture monitoring in glulam timber structures with embedded resistive sensors: Study of influence parameters. Wood Science and Technology, 54, 1463–1478. doi:10.1007/s00226-020-01228-8
  • Watanabe, U., Norimoto, M., Fujita, M. and Gril, G. (1998) Transverse shrinkage anisotropy of coniferous wood investigated by the power spectrum analysis. Journal of Wood Science, 44, 9–14. doi:10.1007/BF00521868
  • Zelinka, S. L., Glass, S. V., Jakes, J. E. and Stone, D. S. (2016) A solution thermodynamics definition of the fiber saturation point and the derivation of a wood–water phase (state) diagram. Wood Science and Technology, 50(3), 443–462. doi:10.1007/s00226-015-0788-7
  • Zhou, H. Z., Zhu, E. C., Fortino, S. and Toratti, T. (2010) Modelling the hygrothermal stress in curved glulam beams. The Journal of Strain Analysis for Engineering Design, 45(2), 129–140. doi:10.1243/03093247JSA563
  • Zhou, M., Caré, S., King, A., Courtier-Murias, D., Rodts, S., Gerber, G., Aimedieu, P., Bonnet, M., Bornert, M. and Coussot, P. (2019) Wetting enhanced by water adsorption in hygroscopic plantlike materials. Physical Review Research, 1, 033190. doi:10.1103/PhysRevResearch.1.033190

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.