1,136
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Development of extraction methodology for identification of extractive-compounds indexing natural durability of selected wood species

, ORCID Icon, &
Pages 1940-1950 | Received 21 Dec 2022, Accepted 24 Apr 2023, Published online: 08 May 2023

References

  • Adamopoulos, S., Voulgaridis, E. and Passialis, C. (2005) Variation of certain chemical properties within the stemwood of black locust (Robinia pseudoacacia L.). Holz Als Roh - Und Werkstoff, 63(5), 327–333. doi:10.1007/s00107-005-0018-3
  • Aloui, F., Nizar, A., Charrier, F. and Charrier, B. (2004) Durability of European oak (Quercus petraea and Quercus robur) against white rot fungi (Coriolus versicolor): relations with phenol extractives. European Journal of Wood and Wood Products, 62(4), 286–290. doi:10.1007/s00107-004-0489-7
  • Baar, J., Paschová, Z., Hofmann, T. and Hapla, F. (2017) Effect of site conditions on extractives content in Sessile oak. IUFRO Division 5 Conference 2017 and 60th SWST International Convention – Forest Sector Innovations for a Greener Future: Final Program, Proceedings and Abstracts, Unpaged. Madison: Society of Wood Science and Technology.
  • Baar, J., Paschová, Z., Hofmann, T., Kolář, T., Koch, G., Saake, B. and Rademacher, P. (2019) Natural durability of subfossil oak: Wood chemical composition changes through the ages. Holzforschung, 74(1), 47–59. doi:10.1515/hf-2018-0309
  • Bartnik, C., Nawrot-Chorabik, K. and Woodward, S. (2020) Phenolic compound concentrations in Picea abies wood as an indicator of susceptibility towards root pathogens. Forest Pathology, 50(6), 1–9. doi:10.1111/efp.12652
  • Brischke, C. and Alfredsen, G. (2022) Biological durability of pine wood. Wood Material Science and Engineering, 1–15. doi:10.1080/17480272.2022.2104134
  • Brischke, C., Bayerbach, R. and Otto Rapp, A. (2006) Decay-influencing factors: A basis for service life prediction of wood and wood-based products. Wood Material Science and Engineering, 1(3–4), 91–107. doi:10.1080/17480270601019658
  • Broda, M. (2020) Natural compounds for wood protection against fungi—a review. Molecules, 25(15), 1–24. doi:10.3390/molecules25153538
  • CEN (2013) European standard EN 335: Durability of wood and wood-based products. Use classes: definitions, application to solid wood and wood-based products (Brussels, Belgium: CEN-European Committee for Standardization).
  • CEN (2016) European standard EN 350: 2016 durability of wood and wood-based products. Testing and classification of the durability tobiological agents of wood and wood-based materials (Brussels, Belgium: CEN-European Committee for Standardization).
  • CEN (2020) European standard EN 113-2: Durability of wood and wood-based products - test method against wood destroying basidiomycetes - part 2: Assessment of inherent or enhanced durability (Brussels, Belgium: CEN-European Committee for Standardization).
  • Destandau, E., Charpentier, J. P., Bostyn, S., Zubrzycki, S., Serrano, V., Seigneuret, J. M. and Breton, C. (2016) Gram-scale purification of dihydrorobinetin from Robinia pseudoacacia L. Wood by centrifugal partition chromatography. Separations, 3(3), 1–12. doi:10.3390/separations3030023
  • Dünisch, O., Richter, H. G. and Koch, G. (2010) Wood properties of juvenile and mature heartwood in Robinia pseudoacacia L. Wood Science and Technology, 44, 301–313. doi:10.1007/s00226-009-0275-0
  • Eichhorn, S., Erfurt, S., Hofmann, T., Seegmüller, S., Németh, R. and Hapla, F. (2017) Determination of the phenolic extractive content in sweet chestnut (Castanea Sativa Mill.) Wood. Wood Research, 62(2), 181–196.
  • Fang, W., Hemming, J., Reunanen, M., Eklund, P., Pineiro, E. C., Poljansek, I., Oven, P. and Willför, S. (2013) Evaluation of selective extraction methods for recovery of polyphenols from pine. Holzforschung, 67(8), 843–851. doi:10.1515/hf-2013-0002
  • Faraone, I., Russo, D., D’Auria, M., Bruno, M. R., Cetera, P., Todaro, L. and Milella, L. (2021) Influence of thermal modification and extraction techniques on yield, antioxidant capacity and phytochemical profile of chestnut (Castanea sativa Mill.) wood. Holzforschun, 75(3), 260–268. doi:10.1515/hf-2020-0037
  • Füchtner, S., Brock-Nannestad, T., Smeds, A., Fredriksson, M., Pilgård, A. and Thygesen, L. G. (2020) Hydrophobic and hydrophilic extractives in Norway spruce and kurile larch and their role in Brown-Rot degradation. Frontiers in Plant Science, 11(June), doi:10.3389/fpls.2020.00855
  • Gierlinger, N., Jacques, D., Schwanninger, M., Wimmer, R. and Pâques, L. E. (2004) Heartwood extractives and lignin content of different larch species (Larix sp.) and relationships to brown-rot decay-resistance. Trees, 18(March), 230–236. doi:10.1007/s00468-003-0300-0
  • Gierlinger, N. and Wimmer, R. (2004) Radial distribution of heartwood extractives and lignin in mature European larch. Wood and Fiber Science, 36(3), 387–339.
  • Hart, J. H. (1968) Morphological and chemical differences between sapwood, discolored sapwood, and heartwood in Black Locust and Osage Orange. Forest Science, 14(3), 334–338. doi:10.1093/forestscience/14.3.334
  • Kai, Y. (1991) Chemistry of extractives. In D. N. S. Hon, and N. Shiraishi (eds.), Wood and Cellulosic Chemistry (Nex York: Marcel Dekker), pp. 215–255.
  • Karppanen, O., Venäläinen, M., Harju, A. M., Willför, S., Pietarinen, S., Laakso, T. and Kainulainen, P. (2007) Knotwood as a window to the indirect measurement of the decay resistance of Scots pine heartwood. Holzforschung, 61(5), 600–604. doi:10.1515/HF.2007.091
  • Keržič, E. and Humar, M. (2021) Studies on the material resistance and moisture dynamics of wood after artificial and natural weathering. Wood Material Science and Engineering, 17(6), 551–557. doi:10.1080/17480272.2021.1902388
  • Kirker, G. T., Blodgett, A. B., Arango, R. A., Lebow, P. K. and Clausen, C. A. (2013) The role of extractives in naturally durable wood species. International Biodeterioration and Biodegradation, 82, 53–58. doi:10.1016/j.ibiod.2013.03.007
  • Klumpers, J., Scalbert, A. and Janin, G. (1994) Ellagitannins in European oak wood: Polymerisation during wood ageing. Phytochemistry, 36(5), 1249–1252. doi:10.1016/S0031-9422(00)89646-6
  • Mämmelä, P., Savolainen, H., Lindroos, L., Kangas, J. and Vartiainen, T. (2000) Analysis of oak tannins by liquid chromatography-electrospray ionisation mass spectrometry. Journal of Chromatography A, 891(1), 75–83. doi:10.1016/S0021-9673(00)00624-5
  • Masson, G., Moutounet, M. and Puech, J. L. (1995) Ellagitannin content of oak wood as a function of species and of sampling position in the tree. American Journal of Enology and Viticulture, 46(2), 262–268.
  • Mayer, W., Gabler, W., Riester, A. and Korger, H. (1967) Die Isolierung von Castalagin, Vescalagin, Castalin und Vescalin. Liebigs Annalen der Chemie, 707, 177–181.
  • Merela, M., Turičnik, V., Vek, V. and Oven, P. (2019) Anatomske, kemijske in sorpcijske lastnosti beljave in jedrovine rdečega bora. Acta Silvae et Ligni, 119, 43–54. doi:10.20315/asetl.119.4
  • Meyer-Veltrup, L., Brischke, C., Alfredsen, G., Humar, M., Flæte, P. O., Isaksson, T., Larsson Brelid, P., Westin, M. and Jermer, J. (2017) The combined effect of wetting ability and durability on outdoor performance of wood: development and verification of a new prediction approach. Wood Science and Technology, 51(3), 615–637. doi:10.1007/s00226-017-0893-x
  • Oven, P., Poljanšek, I. and Vek, V. (2015) Bioaktivne spojine v lesu borov / Pinosylvins as valuable bioactive compounds in the wood of pines. In H. Kraigher and M. Humar (Eds.), Monitoring v gozdarstvu, lesarstvu in papirništvu: proceedings of the scientific meeting Gozd in les, (Vol. May 2015) (Ljubljana, Slovenia: Slovenian Forestry Institute, The Silva Slovenica Publishing Centre), pp. 14–17.
  • Peng, S., Scalbert, A. and Monties, B. (1991) Insoluble ellagitannins in Castanea sativa and Quercus petraea woods. Phytochemistry, 30(3), 775–778. http://dx.doi.org/10.1016/0031-9422(91)85250-4
  • Pietarinen, S. P., Willför, S. M., Ahotupa, M. O., Hemming, J. E. and Holmbom, B. R. (2006) Knotwood and bark extracts: Strong antioxidants from waste materials. Journal of Wood Science, 52(5), 436–444. doi:10.1007/s10086-005-0780-1
  • Preparation of wood for chemical analysis TAPPI T264 cm-97 (standard) (1997), available at: https://books.google.si/books?id = XnsYNAAACAAJ.
  • Priego-Capote, F. and Delgado de la Torre, M. del P. (2013) Accelerated liquid extraction. In Rostagno M. A., and Prado J. M (eds.), Natural Product Extraction: Principles and Applications ( Cambridge, United Kingdom, Royal Society of Chemistry), pp. 157–195.
  • Sablík, P., Giagli, K., Pařil, P., Baar, J. and Rademacher, P. (2016) Impact of extractive chemical compounds from durable wood species on fungal decay after impregnation of non-durable wood species. European Journal of Wood and Wood Products, 74(2), 231–236. doi:10.1007/s00107-015-0984-z
  • Sanz, M., Cadahía, E., Esteruelas, E., Muñoz, ÁM, Fernández De Simón, B., Hernández, T. and Estrella, I. (2010) Phenolic compounds in chestnut (Castanea sativa Mill.) heartwood. Effect of Toasting at Cooperage. Journal of Agricultural and Food Chemistry, 58(17), 9631–9640. doi:10.1021/jf102718t
  • Scalbert, A. (1991) Antimicrobial properties of tannins. Phytochemistry, 30(12), 3875–3883. doi:10.1016/0031-9422(91)83426-L
  • Scalbert, A., Monties, B. and Janin, G. (1989) Tannins in wood: Comparison of different estimation methods. Journal of Agricultural and Food Chemistry, 37(5), 1324–1329. doi:10.1021/jf00089a026
  • Singh, T. and Singh, A. P. (2012) A review on natural products as wood protectant. Wood Science and Technology, 46(5), 851–870. doi:10.1007/s00226-011-0448-5
  • Singleton, V. L. and Rossi, J. A. (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158. available at: http://www.ajevonline.org/cgi/content/abstract/16/3/144.
  • So, W. T., Park, S. J., Kim, J. K., Shim, K., Lee, K. Y., Hyun, J. W., Lee, H. S., Kang, S. K. and Jo, J. M. (1980) On wood properties of imported (introduced) species grown in Korea. Wood properties of Pinus stobus, Pinus silvestris, Pinus banksiana, Picea abies and Robinia pseudoacacia. Research Reports of the Forest Research Institute, Korea, 27, 7–31.
  • Taylor, A. M., Gartner, B. L. and Morrell, J. J. (2002) Heartwood formation and natural durability - a review. Wood and Fiber Science, 34, 587–611. available at: https://ir.library.oregonstate.edu/concern/articles/rj430494s?locale = en%0Apapers3://publication/uuid/AA7D8AD3-4D4F-4B28-87AA-D1E224F47D36.
  • Thaler, N., Žlahtič, M. and Humar, M. (2014) Performance of recent and old sweet chestnut (Castanea sativa) wood. International Biodeterioration and Biodegradation, 94, 141–145. doi:10.1016/j.ibiod.2014.06.016
  • Vázquez, G., Fontenla, E., Santos, J., Freire, M., González-Álvarez, J. and Antorrena, G. (2008) Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products, 28(3), 279–285. doi:10.1016/j.indcrop.2008.03.003
  • Vek, V., Balzano, A., Poljanšek, I., Humar, M. and Oven, P. (2020) Improving fungal decay resistance of less durable sapwood by impregnation with scots pine knotwood and black locust heartwood hydrophilic extractives with antifungal or antioxidant properties. Forests, 11(9), 1–23. doi:10.3390/F11091024
  • Vek, V., Keržič, E., Poljanšek, I., Eklund, P., Humar, M. and Oven, P. (2021) Wood extractives of silver fir and their antioxidant and antifungal properties. Molecules, 26(21), doi:10.3390/molecules26216412
  • Vek, V. and Oven, P. (2011) Influence of different polar solvents on contents of total phenols in wood extracts. Les, 63(3), 45–48.
  • Vek, V., Oven, P., Ters, T., Poljanšek, I. and Hinterstoisser, B. (2014) Extractives of mechanically wounded wood and knots in beech. Holzforschung, 68(5), 529–539. doi:10.1515/hf-2013-0003
  • Vek, V., Poljanšek, I. and Oven, P. (2019) Efficiency of three conventional methods for extraction of dihydrorobinetin and robinetin from wood of black locust. European Journal of Wood and Wood Products, 77(5), 891–901. doi:10.1007/s00107-019-01430-x
  • Venäläinen, M., Harju, A. M., Saranpää, P., Kainulainen, P., Tiitta, M. and Velling, P. (2004) The concentration of phenolics in brown-rot decay resistant and susceptible Scots pine heartwood. Wood Science and Technology, 38(2), 109–118. doi:10.1007/s00226-004-0226-8
  • Wagenführ, R. (2000) Holzatlas (München: Fachbuchverlag Leipzig im Carl Hanser Verlag).
  • Willför, S., Hemming, J., Reunanen, M., Eckerman, C. and Holmbom, B. (2003a) Lignans and lipophilic extractives in Norway spruce knots and stemwood. Holzforschung, 57(1), 27–36. doi:10.1515/HF.2003.005
  • Willför, S., Hemming, J., Reunanen, M. and Holmbom, B. (2003b) Phenolic and lipophilic extractives in Scots pine knots and stemwood. Holzforschung, 57(4), 359–372. doi:10.1515/HF.2003.054
  • Willför, S., Nisula, L., Hemming, J., Reunanen, M. and Holmbom, B. (2004) Bioactive phenolic substances in industrially important tree species. part 1: Knots and stemwood of different spruce species. Holzforschung, 58, 335–344.
  • Willför, S. M., Smeds, A. I. and Holmbom, B. R. (2006) Chromatographic analysis of lignans. Journal of Chromatography A, 1112(1–2), 64–77. doi:10.1016/j.chroma.2005.11.054
  • Williams, R. S (2005) Weathering of wood. In Rowell, R.M. (ed.), Handbook of Wood Chemistry and Wood Composites (Boca Raton, Florida, Taylor and Francis, CRC Press), pp. 139–185.
  • Zule, J., Čufar, K. and Tišler, V. (2016) Hidrofilni ekstraktivi u srži europskog ariša (Larix decidua Mill.) /Hydrophilic extractives in heartwood of European larch (Larix decidua Mill.). Drvna Industrija, 67(4), 363–370. doi:10.5552/drind.2016.1618