192
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Influence of knots on the adhesion of wood from young Eucalyptus grandis plantations

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 1951-1959 | Received 07 Jan 2023, Accepted 25 Apr 2023, Published online: 01 May 2023

References

  • Abbott, A. R. and Whale, L. R. J. (1987) An overview of the use of glued laminated timber (glulam) in the UK. Construction & Building Materials, 1(2), 104–110.
  • As, N., Goker, Y. and Dundar, T. (2006) Effect of knots on the physical and mechanical properties of scots pine (Pinus sylvestris L.). Wood Research, 51(3), 51–58.
  • ASTM (1999) ASTM D198 – Standard Test Methods of Static Tests of Lumber in Structural Sizes (ASTM International), pp. 20.
  • ASTM (2008) Standard Test Method for Strength Properties of Adhesive Bonds in Shear by Compression Loading - D905 (ASTM International), pp. 1–5.
  • ASTM (2014) Standard Test Methods for Small Clear Specimens of Timber – D143 (ASTM International), pp. 31. doi:10.1520/D0143-09.2.
  • Balboni, B. M., Batista, A. S. and Garcia, J. N. (2021) Evaluating the potential for timber production of young forests of Eucalyptus spp. clones used for bioenergy: Wood density and mechanical properties. Australian Forestry, 84(3), 122–132. doi:10.1080/00049158.2021.1945238.
  • Balboni, B. M., Batista, A. S., Rodrigues, R. A. and Garcia, J. N. (2020) Relationship between strength and density in juvenile and mature Eucalyptus sp. wood. Brazilian Journal of Animal and Environmental Research, 3(3), 983–991. doi:10.34188/bjaerv3n3-019.
  • Betters, D. R., Wright, L. L. and Couto, L. (1991) Short rotation woody crop plantations in Brazil and the United States. Biomass and Bioenergy, 1(6), 305–316. doi:10.1016/0961-9534(91)90011-Z.
  • Castro, G. and Paganini, F. (2003) Mixed glued laminated timber of poplar and Eucalyptus grandis clones. Holz als Roh- und Werkstoff, 61, 291–298. doi:10.1007/s00107-003-0393-6.
  • Crafford, P. L. and Wessels, C. B. (2016) The potential of young, green finger-jointed Eucalyptus grandis lumber for roof truss manufacturing. Southern Forests, 78(1), 61–71. doi:10.2989/20702620.2015.1108618.
  • Davis, G. (1997) The performance of adhesive systems for structural timbers. International Journal of Adhesion and Ahesives, 17(3), 247–255.
  • Derikvand, M., Kotlarewski, N., Lee, M., Jiao, H., Chan, A. and Nolan, G. (2018) Visual stress grading of fibre-managed plantation Eucalypt timber for structural building applications. Construction and Building Materials, 167, 688–699. doi:10.1016/J.CONBUILDMAT.2018.02.090.
  • Derikvand, M., Nolan, G., Jiao, H. and Kotlarewski, N. (2017) What to do with structurally low-grade wood from Australia’s plantation eucalyptus; building application? BioResources, 12(1), 4–7.
  • Espíndola, J. J., and Silva Neto, J. M. D. (2001) Identification of flexural stiffness parameters of beams. Journal of the Brazilian Society of Mechanical Sciences, 23, 217–225.
  • FAO (2009) State of the World’s Forests (FAO). Rome, Italy.
  • Frihart, C. R. and Hunt, C. G. (2010) Adhesives with wood materials: Bond formation and performance. In R. J. Ross (ed.), Wood Handbook (Centennial; USDA Forest Service, Forest Products Laboratory, Madison, WI), pp. 509.
  • Gaspar, F., Cruz, H. and Gomes, A. (2015) Modeling the influence of delamination on the mechanical performance of straight glued laminated timber beams. Construction and Building Materials, 98, 447–455. doi:10.1016/j.conbuildmat.2015.08.011.
  • Gomez, K. A. and Gomez, A. A. (1984) Statistical Procedures for Agricultural Research (2nd ed.). (New York: John Wiley & Sons Inc (Verlag)).
  • Grunwald, C., Fecht, S., Vallée, T. and Tannert, T. (2014) Adhesively bonded timber joints - Do defects matter? International Journal of Adhesion and Adhesives, 55, 12–17. doi:10.1016/j.ijadhadh.2014.07.003.
  • Hein, P. R. G. and Brancheriau, L. (2018) Comparison between three-point and four-point flexural tests to determine wood strength of Eucalyptus specimens. Maderas. Ciencia y Tecnología, 20, 333–342.
  • Hunt, C. G., Frihart, C. R., Dunky, M. and Rohumaa, A. (2018) Understanding wood bonds-going beyond what meets the eye: A critical review. Reviews of Adhesion and Adhesives, 6(4), 369–463. doi:10.7569/RAA.2018.097312.
  • Kretschmann, D. E. (2010) Mechanical properties of wood. In Wood Handbook, Wood as an Engineering Material (Centennial; Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory), pp. 508.
  • Lehringer, C. and Gabriel, J. (2014) Review of recent research activities on one-component PUR-adhesives for engineered wood products. In S. Aicher, H.-W. Reinhardt, and H. Garrecht (eds.), Materials and Joints in Timber Structures: Recent Developments of Technology (1st ed., Vol. 9, Springer), pp. 405–406. doi:10.1007/978-94-007-7811-5.
  • Liao, Y., Tu, D., Zhou, J., Zhou, H., Yun, H., Gu, J. and Hu, C. (2017) Feasibility of manufacturing cross-laminated timber using fast-grown small diameter eucalyptus lumbers. Construction and Building Materials, 132, 508–515. doi:10.1016/j.conbuildmat.2016.12.027.
  • Luostarinen, K. and Heräjärvi, H. (2011) Dependence of shear strength on wood properties in cultivated Larix sibirica. Wood Material Science & Engineering, 6(4), 177–184. doi:10.1080/17480272.2011.597877.
  • Mack, J. J. (1979). Australian methods for mechanically testing small clear specimens of timber. CSIRO, Melbourne. 19p.
  • Moberg, L. (2000) Models of internal knot diameter for Pinus sylvestris. Scandinavian Journal of Forest Research, 15(2), 177–187. doi:10.1080/028275800750014984.
  • Morales, C. A. C. (2009) Prototipo para la Enseñanza de la Dinámica Rotacional (Momento de Inercia y Teorema de Ejes Paralelos). Latin American Journal of Physics Education, 3(3), 6–11.
  • Moya, R., Tenorio, C. and Oporto, G. (2019) Short rotation wood crops in Latin American: A review on status and potential uses as biofuel. Energies, 12(4), 1–20. doi:10.3390/en12040705.
  • Nocetti, M., Pröller, M., Brunetti, M., Dowse, G. P. and Wessels, C. B. (2017) Investigating the potential of strength grading green Eucalyptus grandis lumber using multi-sensor technology. BioResources, 12(4), 9273–9286. doi:10.15376/biores.12.4.9273-9286.
  • Pagel, C. L., Lenner, R. and Wessels, C. B. (2020) Investigation into material resistance factors and properties of young, engineered Eucalyptus grandis timber. Construction and Building Materials, 230, 117059. doi:10.1016/j.conbuildmat.2019.117059.
  • Pleguezuelo, C. R. R., Zuazo, V. H. D., Bielders, C., Bocanegra, J. A. J., PereaTorres, F. and Martínez, J. R. F. (2015) Bioenergy farming using woody crops. A review. Agronomy for Sustainable Development, 35(1), 95–119. doi:10.1007/s13593-014-0262-1.
  • Pröller, M., Nocetti, M., Brunetti, M., Barbu, M.-C., Blumentritt, M. and Wessels, C. B. (2018) Influence of processing parameters and wood properties on the edge gluing of green Eucalyptus grandis with a one-component PUR adhesive. European Journal of Wood and Wood Products, 76(4), 1195–1204. doi:10.1007/s00107-018-1313-0.
  • Schneider, C. A., Rasband, W. S. and Eliceiri, K. W. (2012) NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. http://imagej.nih.gov/ij.
  • Suleimana, A., Sena, C. S., Branco, J. M. and Camões, A. (2020) Ability to glue portuguese eucalyptus elements. Buildings, 10(7), 1–10. doi:10.3390/buildings10070133.
  • Šušnjar, M., Krpan, A. P. B., Pentek, T., Horvat, D. and Poršinsky, T. (2006) Influence of knots on classification of timber assortments of silver fir into quality classes. Wood Research, 51(1), 51–58.
  • Wright, S., Dahlen, J., Montes, C. and Eberhardt, T. L. (2019) Quantifying knots by image analysis and modeling their effects on the mechanical properties of loblolly pine lumber. European Journal of Wood and Wood Products, 77(5), 903–917. doi:10.1007/s00107-019-01441-8.
  • Zobel, B. J. and Sprague, J. R. (1998) Juvenile Wood in Forest Trees (Berlin, Germany: Springer). 256p.
  • Zziwa, A., Robert, K., Kizito, S. and Syofuna, A. (2017) The effect of knot size on flexural strength of Eucalyptus grandis structural size timber. Modern Agricultural Science and Technology, 3(1), 43–47. doi:10.15341/mast(2375-9402)/01.03.2017/00.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.