164
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effect of thermo-vacuum modification on selected chemical, physical, and mechanical properties of Siberian larch (Larix sibirica L.) wood

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1991-2000 | Received 18 Feb 2023, Accepted 02 May 2023, Published online: 15 May 2023

References

  • Alén, R., Kotilainen, R. and Zaman, A. (2002) Thermochemical behavior of Norway spruce (Picea abies) at 180–225 °C. Wood Science and Technology, 36(2), 163–171. doi:10.1007/s00226-001-0133-1
  • Ali, M., Abdullah, U. H., Ashaari, Z., Hamid, N. H. and Hua, L. S. (2021) Hydrothermal modification of wood: A review. Polymers, 13(16), 2612. doi:10.3390/polym13162612
  • Allegretti, O., Brunetti, M., Cuccui, I., Ferrari, S., Nocetti, M. and Terziev, N. (2012) Thermo-vacuum modification of spruce (Piceaabies Karst.) and fir (Abies alba Mill.) wood. BioResources, 7(3), 3656–3669.
  • Bal, B. C. (2018) A comparative study of some of the mechanical properties of pine wood heat treated in vacuum, nitrogen, and air atmospheres. BioResources, 13(3), 5504–5511. doi:10.15376/biores.13.3.5504-5511
  • Bergstedt, A. and Lyck, C. (eds.). (2007) Larch Wood - A Literature Review. Forest & Landscape Working Papers no. 232007 (Hørsholm: Forest & Landscape College, University of Copenhagen). ISBN 978-87-7903-337-5.
  • Bi, Z., Morrell, J. J., Lei, Y., Yan, L. and Ji, M. (2022) Eco-friendly and mildly modification of wood cell walls with heat treated wood extracts to improve wood decay resistance. Industrial Crops and Products, 184, 115079. doi:10.1016/j.indcrop.2022.115079
  • Blanc-Jolivet, C., Yanbaev, Y., Kersten, B. and Degen, B. (2018) A set of SNP markers for timber tracking of Larix spp. in Europe and Russia. Forestry: An International Journal of Forest Research, 91(5), 614–628. doi:10.1093/forestry/cpy020
  • Boonstra, M. J. and Tjeerdsma, B. (2006) Chemical analysis of heat treated softwoods. HolzalsRoh-und Werkstoff, 64(3), 204–211. doi:10.1007/s00107-005-0078-4
  • Boonstra, M. J., Van Acker, J., Tjeerdsma, B. F. and Kegel, E. V. (2007) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science, 64(7), 679–690. doi:10.1051/forest:2007048
  • Cabalova, I., Vybohova, E., Igaz, R., Kristak, L., Kacik, F., Antov, P. and Papadopoulos, A. N. (2022) Effect of oxidizing thermal modification on the chemical properties and thermal conductivity of Norway spruce (Piceaabies L.) wood. Wood Material Science & Engineering, 17(5), 366–375. doi:10.1080/17480272.2021.2014566
  • Cetera, P., Todaro, L., Lovaglio, T., Moretti, N. and Rita, A. (2016) Steaming treatment decreases MOE and compression strength of Turkey oak wood. Wood Research, 61(2), 255–264.
  • Cheng, S., Huang, A., Wang, S. and Zhang, Q. (2016) Effect of different heat treatment temperatures on the chemical composition and structure of Chinese fir wood. BioResources, 11(2), 4006–4016.
  • Czajka, M. and Fabisiak, E. (2013) Emission of Volatile Organic Compounds from Cross Section of Spruce Wood (Piceaabies (L.) H. Karst). Annals of Warsaw University of Life Sciences-SGGW, 82, 149–154.
  • Dahll, M. B. (1892) Det sibirskelærketreet. Forstforeningens Årbok 1892, 131–139.
  • EcoChoice (2020) The difference between European, British and Siberian Larch. Accessed on 23 April 2023. Available at: https://ecochoice.co.uk/news/blog/item/the-difference-between-european-british-and-siberian-larch.
  • Edlund, E. (1966) Den sibiriska lärken i Norrland och Dalarna som skogsträd och industriråvara. SverigesSkogsvårdsförbundsTidsskrift, 64(5-6), 461–560.
  • EN 13183-1:2003 (2003) Moisture Content of a Piece of Sawn Timber - Part 1: Determination by Oven dry Method (Ente Nazionale Italiano di Unificazione, Milan).
  • Esteves, B. (2007) Improvement of technological quality of eucalypt wood by heat treatment in air at 170-200(C. Forest Products Journal, 57(1/2), 47–52.
  • Esteves, B., Ayata, U., Cruz-Lopes, L., Brás, I., Ferreira, J. and Domingos, I. (2022) Changes in the content and composition of the extractives in thermally modified tropical hardwoods. Maderas Ciencia y Tecnología, 24(22), 1–14. doi:10.4067/S0718-221X2022000100422
  • Esteves, B. M., Graca, J. and Pereira, H. M. (2008) Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung, 62(3), 344–351. doi:10.1515/HF.2008.057
  • Esteves, B., Videira, R. and Pereira, H. (2011) Chemistry and ecotoxicity of heat-treated pine wood extractives. Wood Science and Technology, 45(4), 661–676. doi:10.1007/s00226-010-0356-0
  • Ferrari, S., Cuccui, I. and Allegretti, O. (2013) Thermo-vacuum modification of some European softwood and hardwood species treated at different conditions. BioResources, 8(1), 1100–1109. doi:10.15376/biores.8.1.1100-1109
  • Gao, H., Sun, M. Y., Cheng, H. Y., Gao, W. L. and Ding, X. L. (2016) Effects of heat treatment under vacuum on properties of poplar. BioResources, 11(1), 1031–1043. doi:10.15376/biores.11.1.1031-1043
  • Gronli, M. G., Várhegyi, G. and Di Blasi, C. (2002) Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research, 41(17), 4201–4208. doi:10.1021/ie0201157
  • Gunduz, G., Aydemir, D. and Karakas, G. (2009) The effect of thermal treatment on the mechanical properties of wild pear (Pyrus elaeagnifolia Pall.) wood and changes in physical properties. Materials & Design, 30(10), 4391–4395. doi:10.1016/j.matdes.2009.04.005
  • Hill, C. A. (2006) Wood Modification: Chemical, Thermal and Other Processes (Chichester: John Wiley & Sons).
  • Hill, C., Altgen, M. and Rautkari, L. (2021) Thermal modification of wood—A review: Chemical changes and hygroscopicity. Journal of Materials Science, 56(11), 6581–6614. doi:10.1007/s10853-020-05722-z
  • ISO 13061-15:2022 (2022) Physical and Mechanical Properties of Wood — Test Methods for Small Clear Wood Specimens - Part 15: Determination of Radial and Tangential Swelling (Ente Nazionale Italiano di Unificazione, Milan).
  • ISO 13061-16:2022 (2022) Physical and Mechanical Properties of Wood — Test Methods for Small Clear Wood Specimens — Part 16: Determination of Volumetric Swelling (Ente Nazionale Italiano di Unificazione, Milan).
  • ISO 13061-5:2022 (2022) Physical and mechanical properties of wood — Test methods for small clear wood specimens — Part 5: Determination of strength in compression perpendicular to grain (Ente Nazionale Italiano di Unificazione, Milan).
  • Jebrane, M., Pockrandt, M., Cuccui, I., Allegretti, O., UetimaneJrE. and Terziev, N. (2018) Comparative study of two softwood species industrially modified by Thermowood® and thermo-vacuum process. BioResources, 13(1), 715–728. doi:10.15376/biores.13.1.715-728
  • Jeffrey, G. A. and Saenger, W. (1991) The importance of hydrogen bonds. In G. A. Jeffrey, and W. Saenger (eds.), (Eds)Hydrogen Bonding in Biological Structures (New York: Springer)), pp. 3–14.
  • Johansson, D. and Morén, T. (2006) The potential of colour measurement for strength prediction of thermally treated wood. Holz als Roh-und Werkstoff, 64(2), 104–110. doi:10.1007/s00107-005-0082-8
  • Kamdem, D. P., Pizzi, A. and Jermannaud, A. (2002) Durability of heat-treated wood. Holz als Roh-und Werkstoff, 60(1), 1–6. doi:10.1007/s00107-001-0261-1
  • Kim, D. Y., Nishiyama, Y., Wada, M., Kuga, S. and Okano, T. (2001) Thermal decomposition of cellulose crystallites in wood. Holzforschung, 55, 521–524. doi:10.1515/HF.2001.084
  • Lavery, M. R. and Milota, M. R. (2000) VOC emissions from Douglasfir: Comparing a commercial and a laboratory kiln. Forest Products Journal, 50(7), 39–47.
  • Lee, S. H., Lum, W. C., Zaidon, A. and Maminski, M. (2015) Microstructural, mechanical and physical properties of post heat-treated melamine-fortified urea formaldehyde-bonded particleboard. European Journal of Wood and Wood Products, 73, 607–616. doi:10.1007/s00107-015-0924-y
  • Mecca, M., Todaro, L., Lo Giudice, V., Lovaglio, T. and D’Auria, M. (2021) GC-MS and SPME techniques highlighted contrasting chemical behaviour in the water extractives of modified Castanea sativa Mill and Fagus sylvatica L. wood. Forests, 12(8), 986. doi:10.3390/f12080986
  • Mohareb, A., Sirmah, P., Petrissans, M. and Gerardin, P. (2012) Effect of heat treatment intensity on wood chemical composition and decay durability of Pinus patula. European Journal of Wood and Wood Products, 70(4), 519–524. doi:10.1007/s00107-011-0582-7
  • Montazeri, N., Oliveira, A. C., Himelbloom, B. H., Leigh, M. B. and Crapo, C. A. (2013) Chemical characterization of commercial liquid smoke products. Food Science & Nutrition, 1(1), 102–115. doi:10.1002/fsn3.9
  • Moreno, J. and Peinado, R. (2012) Chemical aging. In J. Monera, and R. Peinado (eds.), Enological Chemistry (Amsterdam: Elsevier), pp. 375–388. doi:10.1016/B978-0-12-388438-1.00021-2.
  • Park, Y., Jang, S. K., Park, J. H., Yang, S. Y., Chung, H., Han, Y., Chang, Y. S., Choi, I. G. and Yeo, H. (2017) Changes of major chemical components in larch wood through combined treatment of drying and heat treatment using superheated steam. Journal of Wood Science, 63, 635–643. doi:10.1007/s10086-017-1657-9
  • Sandak, A., Sandak, J. and Allegretti, O. (2015) Quality control of vacuum thermally modified wood with near infrared spectroscopy. Vacuum, 114, 44–48. doi:10.1016/j.vacuum.2014.12.027
  • Sandberg, D., Haller, P. and Navi, P. (2013) Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Material Science and Engineering, 8(1), 64–88. doi:10.1080/17480272.2012.751935
  • Sandberg, D., Kutnar, A. and Mantanis, G. I. (2017) Wood modification technologies – A review. iForest, 10(6), 895–908. doi:10.3832/ifor2380-010
  • Sikora, A., Kačík, F., Gaff, M., Vondrová, V., Bubeníková, T. and Kubovský, I. (2018) Impact of thermal modification on color and chemical changes of spruce and oak wood. Journal of Wood Science, 64(4), 406–416. doi:10.1007/s10086-018-1721-0
  • Sivrikaya, H., Tesařová, D., Jeřábková, E. and Can, A. (2019) Color change and emission of volatile organic compounds from Scots pine exposed to heat and vacuum-heat treatment. Journal of Building Engineering, 26, 100918. doi:10.1016/j.jobe.2019.100918
  • Sun, B., Zhang, Y., Su, Y., Wang, X. and Chai, Y. (2023) Effect of vacuum heat treatment on larch earlywood and latewood cell wall properties. Forests, 14(1), 43. doi:10.3390/f14010043
  • TAPPI (2004) Solvent extractives of wood and pulp. TAPPI Test Method T204, TMCD-04, Technical Association of the Pulp and Paper Industry, Atlanta, GA, USA, pp. 1–12.
  • Todaro, L., Rita, A., Pucciariello, R., Mecca, M. and Hiziroglu, S. (2018) Influence of thermo-vacuum treatment on thermal degradation of various wood species. European Journal of Wood and Wood Products, 76(2), 541–547. doi:10.1007/s00107-017-1230-7
  • Topaloğlu, E. and Ay, N. (2010) Some mechanical properties of Siberian Larch (Larixsibirica) wood. In Proceeding of the 1st Serbian Forestry Congress, Under Slogan:“Future with Forests”, Belgrade, 1361–1367.
  • Trichkov, N. and Bogdanov, G. (2019) Main characteristics of larch stems (Larixgmelinii) for the production of solid wood materials, In Proceedings of the 30th International Conference on Wood Science and Technology – ICWST 2019 Implementation of Wood Science in Woodworking Sector and 70th anniversary of Drvnaindustrija Journal, 12-13 December 2019, Zagreb, Croatia, ISBN: 978-953-292-062-8, рр. 207–214.
  • Tumenjargal, B., Ishiguri, F., Aiso, H., Takahashi, Y., Nezu, I., Takashima, Y., Baasan, B., Chultem, G., Ohshima, J. and Yokota, S. (2020) Physical and mechanical properties of wood and their geographic variations in Larix sibirica trees naturally grown in Mongolia. Scientific Reports, 10(1), 12936. doi:10.1038/s41598-020-69781-7
  • Umar, I., Zaidon, A., Lee, S. H. and Halis, R. (2016) Oil-heat treatment of rubberwood for optimum changes in chemical constituents and decay resistance. Journal of Tropical Forest Science, 28(1), 88–96.
  • Wang, Z., Sun, B. and Liu, J. (2017) Investigation of volatile products released during vacuum heat treatment of larch wood. Wood Research, 62(5), 773–782.
  • Wang, Z., Yang, X., Sun, B., Chai, Y., Liu, J. and Cao, J. (2016) Effect of vacuum heat treatment on the chemical composition of larch wood. BioResources, 11(3), 5743–5750.
  • Winandy, J. E. and Lebow, P. K. (2001) Modeling strength loss in wood by chemical composition. Part I. An individual component model for southern pine. Wood and Fiber Science, 33(2), 239–254.
  • Windeisen, E., Bächle, H., Zimmer, B. and Wegener, G. (2009) Relations between chemical changes and mechanical properties of thermally treated wood. Holzforschung, 63(6), 773–778. doi:10.1515/HF.2009.084
  • Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D. H. and Liang, D. T. (2006) In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy & Fuels, 20(1), 388–393. doi:10.1021/ef0580117
  • Yin, Y., Berglund, L. and Salmén, L. (2011) Effect of steam treatment on the properties of wood cell walls. Biomacromolecules, 12(1), 194–202. doi:10.1021/bm101144m
  • Zachar, M., Majlingová, A., Mitterová, I. and Čabalová, I. (2017) Influence of an age and damage of the oak wood on its fire risk. Wood Research, 62(3), 495–504.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.